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Abstract—This paper presents experimental results with 

tele-remote operation of a wheel-loader and proposes a 

method to semi-automate the process. The different 

components of the tele-remote setup are described in the 

paper. We focus on the short loading cycle, which is 

commonly used at quarry and construction sites for moving 

gravel from piles onto trucks. We present results from 

short-loading-cycle experiments with three operators, 

comparing productivity between tele-remote operation and 

manual operation. A productivity loss of 42% with tele-

remote operation motivates the case for more automation. 

We propose a method to automate the bucket-filling process, 

which is one of the key operations performed by a wheel-

loader.  

Index Terms—automation, bucket-filling, construction, 

quarry, tele-operation, wheel-loader 

I. INTRODUCTION 

Tele-operation of commercial vehicles is interesting for 

both safety and productivity reasons. The on-board 

operation of such machines can be unsafe in certain 

applications. For example, in underground mining there 

are situations when loading of blasted material is 

postponed awaiting ventilation to clean the air for workers 

to enter the mine [1]. At mines, construction and quarry 

sites, operators are required to operate the equipment for 

long hours in stretch especially when the working-site is 

far from their office space. Exposure to noise, vibration 

and ergonomics issues for long durations produces stress 

and strain on their body.  

A wheel-loader (shown in Fig. 1) is a versatile machine 

used to move materials in many different industries. Full 

automation of many tasks that are needed to be performed 

by wheel-loaders is difficult [2] and the bucket-filling task 

is, in particular, hard to automate. The skilled drivers use 

many of their human senses to achieve high productivity 

at low fuel consumption without causing unnecessary 

wear and tear on the machine. Tele-remote operation can 

improve both safety and productivity by providing 

comfortable work environment and eliminating the time 

needed to commute to the working-sites.  
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Figure 1. Our experimental wheel-loader. 

 

Figure 2. Short loading cycle. The steps performed by a wheel loader in 
one operation cycle are: 1: Approach to the pile, 2: Bucket-filling, 3: 

Reversing from the pile, 4: Approach to the dumper, 5: Dumping, 6: 
Reversing from the dumper. 

Short loading cycle is a common operation cycle at 
construction and quarry sites. In this cycle, the machine 
repeatedly loads the material from a pile and then dumps 
it onto a dumper truck. An illustration of a typical short 
loading cycle is shown in Fig. 2. 

Our tele-remote setup uses 2.4 GHz IEEE 802.11n 

radio to transmit the video and other data including 

control signals. The control station that we use is similar 

to a machine’s cab further modified with display screens 

to view 360° live video streams. 

Tele-remote operation is a step toward full automation 

of construction machines. Due to the difficulties in 

modeling the bucket-pile interactions, automation of the 

bucket-filling task for loaders and excavator has been an 

open problem since three decades [3].  

Tele-operation of short-cycle loading is known to be 

less efficient compared to manual operation [4]. In this 

paper, we quantify this gap with our remote control setup 

highlighting the difficulties in tele-remote operation. We 
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also propose and evaluate a method to automate the key 

functionality of a wheel-loader, i.e. the bucket-filling. 

II. RELATED WORK 

Tele-remote operation and automation of commercial 
vehicles is under development in industry [5]. In academia, 
the main work is towards improving the perception, for 
example, by providing visualizations of different 
perspectives of the construction machine in its 
environment by cameras mounted on the machine itself 
[6]. In our setup, we use an isometric perspective of the 
machine itself, excluding the environment. The dome 
display environment, investigated in [7], is shown to 
improve the perception compared to a flat screen display 
setup, which we have used. 

Reference [8], similar to our work, presented results 
from remote-operation of an excavator over a wireless IP 
network. They use a Head Mount Display (HMD) with 
end to end latency of 180 milliseconds and report 164% 
increase in cycle time of operation for remote control, 
compared to manual operation. 

Related research on automatic bucket-filling is the work 
done on Load-Haul-Dump (LHD) machines, which are a 
variation of wheel-loaders adapted for underground mines. 
For example, [9] developed a compliance controller for 
the velocity of the tilt cylinder that uses the hydraulic 
pressures in the lift and tilt pistons as inputs. Reference 
[10] showed that, the method proposed in [9] works in 
practice and also performs better than human drivers on 
LHD machines. However, in our work, we propose a more 
generic solution to the bucket-filling problem, applicable 
to different types of machines and environment conditions. 

III. EXPERIMENT SETUP 

A. Wheel-Loader 

The experiment consists of a Volvo L180 wheel loader, 

which is instrumented to enable the functionalities needed 

for remote-operation. To control the machine externally, 

we use an industrial PC which has slots for Canbus cards 

which are used to control the machine by sending signals 

to the machine ECUs (Engine control units). The software 

in one of the ECUs is modified to receive control signals 

for lift, tilt, gas, brake, gear and steering. Furthermore, we 

have six IP cameras, a microphone for audio; a GPS unit 

for localization, an inertial-measurement-unit (IMU) 

mounted on the chair in the machine and a WiFi access 

point (AP) for communication. 

B. Communication 

In Fig. 3, the test setup for the remote control 

experiment is shown. The remote control station and the 

wheel-loader are connected by a part-wired (Ethernet and 

fiber) and part-wireless (IEEE802.11n) network. The 

wheel-loader and the control station are in two different 

locations ~800 meters apart. Most of the devices shown in 

Fig. 3 have an Ethernet interface except the IMU and GPS 

which are connected to industrial PC via Canbus and 

Serial-bus respectively. We used IEEE 802.11n as the 

radio link for this setup because it is widely deployed in 

industries such as mining and construction where wheel 

loaders are commonly used. 

In total, we have four types of data streams over the 

network as shown in Fig. 4. The data streams from 

cameras and microphone are seven individual streams 

representing most of the traffic (~99% when the machine 

is in motion). 

 

Figure 3. The remote-control setup. 

 

Figure 4. Data streams between the machine and the control station. 

 

Figure 5. The Remote control station. 

C. Remote Control Station 

The remote control station (Fig. 5) is a motion platform 

with similar controls panels as a machine. This platform 

has roll and pitch movements and is commonly used as a 

simulator to train new operators of wheel-loaders and 

excavators. The platform has been modified with screens 

and additional software, to send the stream of control data. 

An HMI program is developed which receives the 

feedback streams from cameras, GPS and machine data 

and displays different views (top, side and isometric) of 

the machine and updates a simulated dashboard. The IMU 

data stream is used to move the motion platform. 

D. Video Setup 

We used six cameras to transmit live video from around 
the machine. These cameras support both MJPEG and 
H.264 video protocols and can transmit full HD 
(1980x1080) resolution. However, we operated them at 
1280x720 with H.264 due to bandwidth limitation of the 
Wi-Fi network for real-time live video with mobile clients. 
Furthermore, we limit the bandwidth used by each camera 
using H.264 parameters.  

The latency in the video transmission depends on 1) the 

camera’s hardware and firmware (image processing and 

encoding) 2) the network and 3) the receiving client 

(decoding and display). The latency of the camera  we use  
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(Panasonic WV-SBV131M) is found out to be in the 

range of 150-250 milli-seconds depending on H.264 

parameters, which is in line with other IP cameras as 

discussed in [11]. 

E. Procedure 

The operators were asked to fill a Volvo A25 truck with 

three full buckets in a short loading cycle. The material 

used in this experiment was medium-course gravel (8-32 

mm in diameter). 

The operators were trained for two hours on the remote 

control station and before the experiment started, 

operators were given some time to fill a few trucks to 

warm-up before they were measured and recorded. The 

three operators we used in this study have a lot of 

experience with manual operation of wheel-loaders. 

During experiment, each operator filled the truck three 

times (nine short loading cycle in total) in manual 

operation and then three times remotely. 

We logged relevant machine signals; weight of the 

dumper, networking data, and recorded videos of the 

machine in both manual and remote operation to measure 

the differences. 

IV. RESULTS AND DISCUSSION 

In this experiment, we consider productivity, in terms 

of the amount of material moved per unit time (tons/hour), 

as the performance parameter. Productivity for a wheel 

loader is a function of payload and cycle time. It decreases 

due to less filled buckets and long operation cycle times.  

We observed that cycle time of operation for remote 

operation increased by 70% from manual operation, which 

explains the 42% loss in productivity observed with the 

remote-operation. Fig. 6 shows that the average cycle time 

of operation increases for all parts of short loading cycle. 

The maximum increase is for steps four and five of the 

short loading cycle, in which the machine approaches and 

dumps the material into the truck. 

 

Figure 6. Average cycle time for the three operators (Op) in manual and 
remote operation where the standard deviation is shown for the 

complete cycles.  

TABLE I: AVERAGE BUCKET WEIGHTS (TON) FOR THE THREE 

OPERATORS (OP) 

Approach Op 1 Op 2 Op 3 

Manual 7.62 7.94 6.99 

Remote 7.35 7.72 6.81 

We also observed that the average bucket weight for 

remote operation was lower compared to manual 

operation. As shown in Table I, the difference in average 

bucket weight was however very small and on average, 

the operators managed to fill the bucket (97% of how 

much they filled in manual). 

The results show that drivers were slower during 

remote-operation. The increase in cycle time of operation 

on remote has possibly several reasons. The lack of 

perception of being in the machine is likely the main issue. 

For example, the operators in manual operation use their 

vestibular system (located in the ear) to detect linear 

(gravito-inertial forces) and rotational accelerations in 3D 

[12]. The motion platform used in the experiment provides 

only the roll and pitch movements and hence the operators 

fail to judge the linear speed/acceleration during driving. 

Lack of depth perception, which arises from human 

vision being replaced by 2d camera-feed, presents a 

drawback of the remote-operation. Additionally, some 

network issues, that arises when all video streams are 

running, results in small but noticeable glitches in the one 

of the cameras at a time with a frequency of around 1 Hz.  

The difficulties with the remote-operation motivate the 

case for more automation. A major roadblock to full 

automation of wheel-loaders is the bucket-filling step. In 

the next section, we present our on-going work on 

automating bucket-filling for a wheel-loader. 

V. AUTOMATIC BUCKET-FILLING 

A fully autonomous loading operation is known to be 

difficult and has been an open area of research for a long 

time. Although tele-operated LHD machines have been 

used in underground mines for more than ten years [3], a 

fully automated system of an LHD machine has never 

been demonstrated. 

To address this, [4] developed a bucket-filling 

algorithm for tele-remote operated LHD machines to load 

blasted rock in an underground mine. The resulting semi-

automated operation was less productive than manual 

operation and tele-operation was therefore discontinued.  

Reference [13] proposes a machine learning based 

function for bucket-filling to load medium-course gravel. 

We build upon this work and see if machine learning 

models can predict the motion of a wheel loader’s pistons 

in terms of the velocity of lift/tilt cylinders. 

 

Figure 7. Block diagram of the loading process (bottom) and variables (top) 
for the machine (Gm) and the pile (Gp). The operator actions include lift 

and tilt joystick commands and movement of the throttle pedal. 
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A. Data 

The data used to develop the following models have 

been provided by our industrial partner. The data contains 

variables such as the angles of lift and tilt joints and 

hydraulic pressures in the lift and tilt cylinders of a Volvo 

L120G wheel loader that is used by an expert driver to 

load medium-course gravel (8-32 mm in diameter). Fig. 7 

illustrates the automatic loading problem in terms of a 

control block diagram and the interaction forces between 

the machine and pile. The hydraulic system in the 

convectional diesel engine powered machines is a multi-

variable system where the forces applied to lift and tilt 

pistons come from a nonlinear coupled function of 

operator actions as given in (1). 

 , , ,L T L T Pf f f j j t                        (1) 

The resistance forces from the pile (fLR, fTR) cannot be 

measured or accurately modeled, and this poses the main 

challenge in the bucket-filling problem. The lift and tilt 

angles (L, T) define the trajectory of the bucket through 

the pile. 

B. Cascade Model 

First a linear regression model was tested which failed 

to capture the correct dynamics of the driver’s use of the 

lift and tilt actions [13]. We conclude that the actions of 

drivers cannot be predicted by a linear model and non-

linear methods are needed. In reality, the lift and tilt 

actions of the driver are discrete and related to the 

dynamics of the pile, the bucket-filling process, and the 

sensory ques and experience (priors) of the driver.  

We extend the linear regression model with a 

classification model in an attempt to approximate the 

driver’s decision to use the lift and tilt actions. This is 

motivated from the observation that expert drivers use lift 

and tilt cylinders alternatively. 

TABLE II: STRUCTURE OF THE TRAINING DATA FOR THE CASCADE 

MODEL 

Model type Feature vector Output 

Ca for pLH 
˙

[ , , , , ]T L T L Tf f    
L LHth   

C for pLL 
˙

[ , , , , ]T L T L Tf f    
L LLth   

C for pTH 
˙

[ , , , , ]L L T L Tf f    
T THth   

C for pTL 
˙

[ , , , , ]L L T L Tf f    T TLth   

Rb for jL [ , , , , , , , ]LH LL TH TL L T L Tp p p p f f   
L  

R for jT [ , , , , , , , ]LH LL TH TL L T L Tp p p p f f   
T  

a. C = Classification; R = Regression 

Fig. 8 illustrates the proposed scheme of cascaded 

models for estimation of lift/tilt velocity demands. First, 

four classification models predict (based on the data 

presented during training) the decision probability of lift 

action high (pLH), lift action low (pLL), tilt action high (pTH) 

and tilt action low (pTL). Each classification block in Fig. 8 

contains two classification models, one for high and one 

for low value of the action. The structure of the data used 

for the training of classification and regression models is 

shown in Table II. The threshold parameters 

,  ,  ,  LHth LLth THth TLth     for training the classifiers have 

been handcrafted. 

 

Figure 8. Machine learning model for predicting the motion of wheel-
loader pistons during bucket-filling 

Instead of using binary output, we use the probabilistic 

estimates ( , , ,LH LL TH TLp p p p ) from each classifier as 

inputs to the regression model to predict the velocity 

demands for lift and tilt pistons.  

 

 

Figure 9. Prediction of lift/tilt velocity demand from  the proposed 
model.  

C. Simulation Result 

The performance of a machine learning model is 

assessed on the basis of its generalization capabilities on 

unseen data. In Fig. 9, we show a test example of how the 

proposed cascaded network of machine learning models 

performs on an unseen bucket-filling example. The model 

approximates the velocity of lift and tilt cylinders quite 

well and it can be observed that the prediction captures the 

on-off nature of the lift and tilt commands. The regression 

models using probabilistic estimates from the 

classification models make output predictions at three 

distinct levels. 

VI. CONCLUSION AND FUTURE WORK 

Tele-remote operation of the short loading cycle with 

wheel-loaders is challenging. The constrained human 

perception when using a tele-remote setup makes it 

difficult to operate efficiently. We found that the remote 

operation with this setup results in a productivity loss of 

42%, which is mainly due to the increase in the time of 

operation. 
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The depth perception for the remote-operation needs to 

be improved by integrating technologies like ultra-sonic 

sensor and lidar into the current HMI. A reliable wireless 

medium that is less sensitive to varying radio conditions is 

also essential for the remote operation. The requirements 

on such a radio solution should be low jitter and tolerable 

latency.  

We propose an automatic bucket-filling function based 

on machine learning with training data from manual 

operation. Classification and regression models are used 

in cascade to build a system that approximates the lift and 

tilt actions of an expert operator from the velocities of 

lift/tilt pistons. The classification models can predict the 

driver decisions to use the lift and tilt actions. 

This first implementation of the machine-learning 

based bucket-filling function gives promising results. In 

the future, we plan to conduct more field experiments to 

validate the proposed bucket-filling algorithm. 

Furthermore, reinforcement learning methods will be 

investigated to improve the efficiency of the bucket-filling 

function. 
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