
Modeling of Wave Propagation for Condition 

Monitoring: Effect of Particular Qualities of PZT 

Actuation 
 

Evgenia V. Kirillova
1
, Wolfgang Seemann

2
, and Maria S. Shevtsova

1 

1 
RheinMain University of Applied Sciences, Wiesbaden, Germany 

2 
Karlsruhe Institute of Technology, Karlsruhe, Germany 

Email: {evgenia.kirillova, maria.shevtsova}@hs-rm.de; wolfgang.seemann@kit.edu 
 

 
 

Abstract—In this article, a model simulating wave 

propagation in an infinite isotropic structure excited by a 

thin piezoelectric wafer is considered. Three different 

models are used to calculate wave fields occuring in the 

considered layer. The first finite element (FE) model 

simulates the excitation caused by a piezoelectric actuator 

bonded onto the host structure using an adhesive layer. The 

actuator is driven by the electric potential applied to its 

upper surface. The second semi-analytical model is based on 

the Fourier transform and on the Green’s matrix 

representation for the calculation of the occuring 

displacement fields. The third model introduces the effect of 

the actuator as two pin forces applied to the ends of the 

actuator. The results demonstrate the advantages and 

disadvanatges of the presented approaches, as well as the 

effect of a bonding layer in a wide frequency range. 

Index Terms—composite structure, finite element modeling, 

Fourier transform, Green's matrix, perfectly matched layer 

(PML), piezoelectric actuator, pin-force model, waves 

excitation 
 

I. INTRODUCTION 

Condition Monitoring methods (CM) comprise the 

techniques allowing to monitor, detect and analyze 

machinery condition data [1], [2]. Application of 

condition monitoring helps to avoid losses caused by the 

breakdown of industrial machinery and to reduce 

maintenance costs. Nowadays, the use of travelling waves 

is one of the most widespread methods for detecting 

damages in engineering systems [3]-[5]. Among the large 

number of existing methods for elastic waves excitation, 

the method based on the use of piezoelectric elements 

remains the most frequently used one [4]-[10] because 

these transducers have compact size, high sensitivity over 

the wide frequency range and low production costs. 

When used as actuators, piezoelectric elements are 

adhesively bonded on the inspected structure to convert 

the driving electric voltage into mechanical strain. The 

excited waves go through the structure; if they meet a 

damage, such as delamination, void or inclusion, they 

interact with it. The subsequent extraction of damage 

information is performed by comparing the delay of the 

arrival time of signals before and after damage and the 
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wave attenuation. Numerous investigations are devoted to 

the interaction between a piezoelectric sensor, or an 

actuator, and an elastic structure. They prove that shear 

stresses occuring between a piezoelectric patch and a host 

structure concentrate at the edge of the contact area [9]. 

Thereby, the simplified so called pin-force model [5], [11] 

is widely used to excite different kinds of acoustic waves 

in elastic structures. In this model, the deformation is 

transferred from a piezoelectric patch to the host structure 

through the forces “pins” concentrated at the ends of the 

actuator. However, only in a few works [12]-[14] the 

effect of a bonding layer between a piezoelectric patch 

and the structure is taken into account. The purpose of 

this paper is to estimate the effect of the glue and to 

analyze wave fields occuring in an isotropic infinite layer 

using three different approaches.  

In the first approach, the considered isotropic structure 

is excited by a thin piezoelectric patch mounted on the 

upper surface. In this model, for two infinitely far ends of 

the layer, an absorbing boundary condition is applied to 

simulate open boundaries, and is described by means of 

perfectly matched layers (PML). The wave field is 

obtained by means of the steady-state analysis performed 

in the FE package COMSOL Multiphysics. Different 

values of the glue thickness are taken into consideration. 

The second semi-analytical method makes it possible to 

calculate unknown displacement fields based on the 

Fourier transform, the Green’s matrix representation [7], 

[15] and the numerical contour integration. The third 

approach is the simplified approach, which describes the 

effect of a thin actuator using the pin-force model. The 

occuring wave fields are analyzed at different vibration 

frequencies. 

II. PROBLEM FORMULATION 

An isotropic infinite layer of thickness h, which 

occupies the volume   0;,  zhxzxD  is 

considered. The oscillations of the layer are excited by a 

thin piezoelectric actuator of thickness hPZT mounted on 

the upper surface in the region ],[ aa . The glue 

thickness is hb. Time dependency is assumed harmonic in 

the form tie  , where  is the vibration frequency, as 

shown in Fig. 1.  
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Figure 1. Scheme of the loaded structure. 

Lame's equations for the steady-state harmonic 

vibrations can be written in compact form: 

2 0L  u u    (1) 

where  is the mass density and u is the displacement 

field. The upper and bottom surfaces are free of stress. 

Constitutive relations for PZT-actuator are represented in 

strain-charge form:  

*E   ε s σ d E    (2) 

0 r

   D d σ ε E ,   (3) 

where “*” indicates transpose operation and  is the strain 

tensor,  is the stress tensor, E is the electric-field vector, 

D is the electric charge density displacement, E
s is the 

compliance tensor for constant electric field, d is the 

piezoelectric coupling coefficients matrix, and r


ε  is the 

electric permittivity tensor. The constant 0 is the electric 

permittivity of free space. The tensor  and the vector E 

are expressed in terms of displacements u and the electric 

potential   is as follows 

*)(
2

1
uuε  ,  (4) 

E .   (5) 

The aim of this study is to determine the displacement 

field u  caused by harmonic vibrations of a piezoelectric 

patch driven by a harmonically oscillating potential 

applied to the upper and lower surfaces of the 

piezoelectric actuator. 

III. NUMERICAL RESULTS 

Let us consider one half of an isotropic layer of 

thickness h=2 mm and length l=1 m actuated by a 

piezoelectric wafer. Elastic properties of the layer are 

taken as follows: mass density  =2500 kg/m
3
, Poisson’s 

ratio 33.0  and Young’s modulus E=20 GPa. 

Below the analysis of the wave fields numerically 

calculated for the three considered models is presented in 

detail. 

A. Comparison of the Results Obtained for the FE-

Model with and without an Adhesive Layer 

According to the first FE model, an unknown wave-

field is obtained by the frequency response analysis. This 

approach is used for both models - with and without a 

bonding layer - and for different glue thicknesses. 

 

Figure 2. Part of the mapped FE-mesh near the contact area. 

In the first model the actuating patch of a half-length 

a=10 mm and thickness hPZT=0.2 mm is made of 

piezoelectric ceramics PZT-5H, when the properties of a 

bonding layer are: mass density  =910 kg/m
3
, Poisson’s 

ratio 37.0  and Young’s modulus E=1.02 GPa. The 

thickness of the bonding layer varies in the range: 

hb=0 m that corresponds to a model without adhesive 

layer, hb=10 m and hb=50 m. On the top of the PZT-

actuator, an electric potential with the amplitude U=50 V 

is applied when the bottom surface is grounded. The 

piezoelectric constant of PZT-5H used in the patch is 

d31=−265 mm/kV. A perfectly matched layer (PML) of a 

finite length l1=0.5 m simulates a reflectionless boundary 

condition on the right side of the layer. A symmetry plane 

boundary condition is applied to the left side of the 

structure. All other boundaries are assumed to be free. In 

Fig. 2 the mapped finite-element mesh of a part of the 

considered structure is presented. Minimum number of 

finite elements in vertical direction for the bonding layer 

is taken equal to 3 for the finite element model with 

hb=50 m. Influence of the number of finite elements on 

the final solutions is estimated. Below in Table I different 

sizes of the finite element mesh used during the FE-

analysis are presented. In case of the extremely coarse 

mesh the lowest number of quadrilateral elements is 

taken. This case corresponds to the lowest number of 

degrees of freedom and the shortest calculation time. The 

case of extremely fine mesh corresponds to the highest 

number of the finite elements, number of degrees of 

freedom and the longest calculation time.  

TABLE I: FE-MESH CHARACTERISTICS. 

№ Type of the FE-
mesh 

Number of degrees 
of freedom 

Number of 
elements 

1. Extremely coarse 27435 3200 

2. Extra coarse 37935 4450 
3. Coarse 58935 7644 

4. Normal  79935 10394 

5. Fine  100935 11950 
6. Extra fine 184935 21950 

7. Extremely fine 268935 31950 

 

In Fig. 3 dependencies of the x-displacements 

calculated on the upper surface of the host structure are 

presented depending on the finite element mesh size. The 

numbers presented in the legend correspond to the 
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numbers of the finite element mesh size from Table I. 

Displacement fields are calculated at various vibration 

frequencies: (a) f=35 kHz, (b) f=75 kHz, and (c) 

f=150 kHz. From Fig. 3 (a) one can see that for the 

frequency f=35 kHz all the used meshes give very similar 

distributions of the displacement fields. It means that 

even a coarse mesh may lead to the reasonable results at 

low frequencies. For the higher frequency f=75 kHz the 

results corresponding to the coarse and normal size mesh 

differ significantly and they are stabilized when the fine 

mesh is used (see Fig. 3 (b)). In case of the highest 

considered vibration frequency f=150 kHz already an 

extra fine FE-mesh is needed (see Fig. 3 (c)). This is due 

to the fact that the size of the largest element has to be 

substantially smaller than the wavelength in order to 

resolve the problem. For the subsequent analysis the most 

suitable FE- mesh density is used at any particular 

frequency. Relatively small computational time costs 

needed for modeling the oscillations of the isotropic layer 

are rapidly increasing in case of multilayer composites. 

Below in Fig. 4, shear stresses in the contact area are 

presented depending on the glue thickness at two 

different frequencies (a) f=5 kHz and (b) f=75 kHz. It is 

apparent that a thicker bonding layer produces a 

weakened load transfer between the patch and the host 

structure. In the models without bonding and with a 

thinner adhesive layer of thickenss hb=10 m, shear 

stresses are concentrated at the end points of a 

piezoelectric patch. 

 
(a) 

 
(b) 

 
(c) 

Figure 3. Influence of the FE-mesh size on the final displacement fields 

at different frequency: (a) f=35 kHz, (b) f=75 kHz, and (c) f=150 kHz. 

When the thickness of a bonding layer is equal to zero, 

the whole load transfer takes place over the end points of 

the piezoelectric wafer and a pin-force model can be 

reasonably used. This model is considered in more details 

in the next section. It is obvious that this behavior of the 

shear stresses remains the same at low (a) and high (b) 

frequencies.  

 
(a) 

  
(b) 

Figure 4. Dependencies of contact shear stresses on the thickness of the 
bonding layer at lower (a) and higher (b) vibration frequencies. 

From Fig. 5 one can see the contact displacements 

distribution at the frequencies (a) f=5 kHz and (a) 

f=75 kHz. The results are presented depending on the 

thickness of the adhesive layer. 

It is obvious that the displacements amplitude 

significantly depends on the bonding layer thickness. At a 

lower frequency (a) in the free adhesive case the 
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amplitude of x-displacement takes the highest value, 

whereas the thickest bonding layer with hb=50 m 

sufficiently attenuates the tangent displacements of the 

lower actuator's surface, and reduces the surface 

displacements of the host structure. In case of a higher 

vibration frequency the contact displacements take a 

more complicated shape and thus can no longer be 

described by a linear function. During the research, 

graphs for the y-components of contact stresses and 

displacements were plotted. Their amplitudes are much 

smaller (approximately ten times) than the amplitudes of 

the x-components. Therefore, when constructing a semi-

analytical model and two pin forces, the у-components 

are not taken into account.  

 
(a) 

 
(b) 

Figure 5. Dependencies of x-displacements in the contact area on the 

thickness of the bonding layer at lower (a) and higher (b) vibration 

frequencies. 

 
(a) 

 
(b) 

Figure 6. Surface plot of x- and y-displacements depending on the 

vibration frequency 

Surface plots of x- and y-displacements of the host 

structure are presented in Fig. 6. The FE-analysis is 

performed at vibration frequencies (a) f=35 kHz and (b) 

f=75 kHz in case of a bonding layer of hb=10 m.  

The deformed shapes of the considered layer are 

presented in a rainbow color table. The initial 

undeformed boundaries are represented as the black 

rectangle. Under each surface plot the scale of amplitudes 

in meters is presented. It is obvious that the amplitudes of 

the host structure surface x-displacements are 

considerably higher than the y-displacements.  

 
(a) 

 
(b) 

 
(c) 

Figure 7. Displacement amplitude depending on the bond thickness and 

vibration frequency. 

In Fig. 7 displacement fields calculated over the upper 

surface of the host structure at vibration frequencies (a) 

f=35 kHz, (b) f=75 kHz and (c) f=150 kHz with varied 

thickness of the adhesive layer are presented. The 

graphics indicate that the bond thickness has not much 

influence on the resulting displacements in far field at 

lower vibration frequencies (a). With larger frequency (b) 

the discrepancy gets higher. For the model without a glue 

the highest amplitudes of vibrations are presented, when 
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for the models with thicker bonding layers of hb=10 m 

and hb=50 m the resulting displacement fields almost 

coincide and look smoother around the peaks (b). The 

strongest discrepancy (c) in smothness of the resulting 

displacement fields corresponds to the highest vibration 

frequency, when the maximal amplitudes take very close 

values for all considered models. It is obvious that the 

thicker adhesive layer leads to a slightly smoother 

displacement field. 

B. Comparison of the Numerical Results: FE-Model, 

Integral Representation and Pin-Force Model 

In the second approach, the formulated problem (1)-(5) 

is solved using a semi-analytical approach based on the 

use of the Fourier transform [7], [15] applied to (1) with 

respect to the spatial coordinate x and the Fourier 

variable . The solution of the problem can be written as 

follows  

     


 


 dezzx xi
QKu ,

2

1
, (6) 

where K and Q are the Fourier transforms of the Green’s 

matrix k and of the function of load q(x), respectively.  

   Tx

a

a

xi Qdxex 00



qQ ,  (7) 

 
 







ziM
K

,1
11K                             (8) 

where 

 

    
    
    

    

1 2

2 2 4

1 2 2 1

2 4

2 1

4

1 2 2 1

2 2

1 2 1 2

,

                    sinh sinh

                     cosh sinh

                     sinh cosh

                     cosh sinh

          

M z i

z z

h h z h

h z h

h z h

 

      

   

    

     

  

 

 

 

 

    6

1 2           sinh cosh ,h z h   

   (9) 

   
   

   

2 4 8 4 2 2

1 2 1 2

1 2

2 4

1 2 1 2

2 2

           sinh sinh

           2 cosh cosh ,

h h

h h

         

 

     

     







       (10) 

where 2
2

22 5.0   , 2
1

22
1   , 2

2
22

2   , pv/1    

and 
sv/2    are the wavenumbers for the longitudinal 

and shear waves respectively, vp and vs are the velocities 

of their propagation,  is the shear modulus,  is the 

dimensionless vibration frequency. The load q(x) is taken 

from the above described FE-problem and approximated 

by a system of the basis functions. In accordance with the 

limiting absorption principle [16], the integration contour 

  goes in the complex plane   along the real axis. It 

bypasses the positive poles of K from below, and the 

negative ones - from above in case without backward 

waves (see Fig. 8). 

 

Figure 8. Integration contour. 

In the third model, the contact stresses appearing under 

the actuating patch are described by means of a simplified 

approach, according to which the bonding between a thin 

piezoelectric patch and a waveguide is assumed to be 

ideal and the shear stress distribution along the surface of 

an actuator can be expressed using two Dirac delta-

functions  

      axaxax
zxz 


 00
            (11) 

where 0a  is the pin force applied at the boundary points 

ax   of the contact area [5], [9], [11]. The pin force 

amplitudes are calculated by the integration of shear 

stresses appearing in the contact area. These stresses are 

taken from the aforementioned FE-model. The 

numerically calculated wave fields are compared for the 

three considered models at vibration frequency 

kHzf 35 . The results corresponding to two different 

values of the glue thickness are presented in Fig. 9: (a) 

hb=0 m and (b) hb=50 m.  

 
(a) 

 
(b) 

Figure 9. Displacement amplitude depending on the model and 
thickness of glue. 

One can see from Fig. 9 (a) that the amplitudes of 

displacements are in a good agreement for all the three 

considered models when the  thickness  of  bonding  layer  
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equals to zero. In Fig. 9 (b) one can see that results 

obtained by integral approach and FE-model are in a 

good agreement both in far and near field, when the 

results calculated using a pin-force model differ 

significantly in the vicinity of a piezoelectric patch. It is 

obvious that all three approaches allow to obtain 

comparable results in a far field.  

IV. CONCLUSIONS 

In this work, the effect of a bonding layer between an 

infinite isotropic structure and a piezoelectric thin patch 

actuator is investigated. The results indicate that the 

thickness of the bonding layer has a significant effect on 

actuation characteristics of the piezoelectric patch.  

The shear stress distribution under the piezoelectric 

actuator differs considerably with the growth of the 

thickness of a bonding layer. It is shown that the adhesive 

layer of the highest thickness produces the dumped load 

transfer between the patch and the structure. When the 

thickness of the bonding layer is equal to zero, shear 

stresses concentrate in the vicinities of the end points of 

the contact area and the load transfers to the surface of 

the host structure predominantly over these points.  

An influence of the finite element mesh density on the 

distribution of the displacement fields is analyzed. The 

element size limits are estimated for every considered 

frequency range. 

The resulting displacements in the far field are not 

much influenced by the thickness of the bonding layer, 

whereas near the vibration source the difference of the 

waves behaviour is obvious. It is stated that the thicker 

adhesive layers allow to obtain the slightly smoother 

displacement fields, and an influence of adhesive 

thickness on the wave amplitudes increases with the 

growth of vibration frequency.  

Three different approaches are used to simulate the 

excitation of the host structure. The resulting 

displacement fields are compared for all simulated 

models at one vibration frequency and with varied 

thickness of a bonding layer.  

Analysis of the obtained results shows that all the 

applied methods can be effectively used when the 

thickness of an adhesive layer is negligible, and a so-

called ideal bonding takes place. It is shown that with the 

growth of the bond thickness the FE-model and the 

integration approach lead to the comparable results both 

near the vibration source and in a far field, when the pin-

force model leads to the high discrepancy in the near field. 
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