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Abstract—Time delay is usually inevitable in a system 

consisting of spatially and/or wirelessly interconnected units 

or subsystems. This paper deals with the fundamental 

problem of stability and contractive performance for 

systems interconnected over an undirected graph with time 

delay in the states of subsystems. A sufficient condition for 

the well-posedness, delay-dependent stability and 

contractiveness of such systems is derived by means of 

finite-dimensional linear matrix inequalities (LMIs), which 

provides a useful tool for further exploration of the 

controller design problem. A numerical example is also 

presented to show the validity of the obtained results.  

Index Terms—delay-dependent stability, contractiveness, 

time delay systems, undirected graph, LMIs 

I. INTRODUCTION 

The recent years have witnessed a great deal of 

activities in the study of spatially and/or wirelessly 

interconnected systems, such as satellites in formation [1], 

unmanned aerial vehicles in formation [2], robots in 

formation [3], and automated highways [4]. Such inter- 

connected systems present usually complex global 

dynamic behavior since the subsystems included therein 

have the characteristic of sensing, computing and 

communicating, etc. And these systems can be described 

by means of an undirected graph, the state-space 

representations of the different subsystems and an 

interconnection condition (see, e.g., [5]), which is often 

simply called systems interconnected over graphs. 

With respect to these systems interconnected over 

graphs, a lot of research results have been obtained for 

the problems of stability, performance analysis and 

controllers design. For examples, the problems of synthe- 

sizing a distributed output feedback controller achieving 

H performance have been considered for continue and 

discrete time system interconnected over arbitrary graph 

structures in [5] and [6], respectively. The problem of 

analysis, synthesis and implementation of distributed 

controllers for homogeneous and heterogeneous inter-

connected systems with a highly structured inter-

connection topology have been dealt with in [7] and [8], 

respectively.  
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Time delay, which generally gives rise to deteriorating 

the system performance, is very common in practical 

dynamical systems. Some research topics on time delay 

have been investigated (see, e.g., [9]–[12]). Regard to the 

interconnected systems, time delay may appear in the 

state variables of the subsystems as well as in the inter-

connections. The problem of distributed controllers 

design for these systems with arbitrarily small 

communication delays between subsystems has been 

considered in [13], [14]. However, with respect to the 

system inter-connected over an undirected graph, few 

results are known for the case where time delay appears 

in the state variables of the subsystems. 

In this paper, we consider a system consisting of L 

different or similar subsystems with their own time delay, 

interconnected over an undirected graph, and the main 

purpose is to find a sufficient condition for the system to 

achieve the well-posedness, delay-dependent stability and 

a desire performance. The paper is organized as follows. 

In Section II, some preliminaries and definitions are pre-

sented. In Section III, a sufficient condition is given in 

terms of LMIs for the well-posedness, delay-dependent 

stability and contractiveness of the time delay systems 

interconnected over an undirected graph. In Section IV, a 

numerical simulation is provided to illustrate the effect- 

iveness of the proposed result. Finally, the conclusion is 

given in Section V. 

Notation: denotes the set of real numbers. n  

denotes the n -dimensional Euclidean space. The non-

negative real number is denoted by + and the n m  real 

matrix is denoted by n m . The n n  positive definite 

matrix is denoted by +

n n . I  and 0  stand for the identity 

and zero matrix, respectively. The set of n n real 

symmetric matrices is denoted by n n

S

 . Given real sym-

metric matrix , 0H H   means * 0x Hx  for all 0x  . 

When , 1,2 ,,iY i L are given, diagk i l iY   is defined by 

block-diagonal matrix. Likewise, colk i l iu  denotes the 

signal  , ,k lu u  formed by concatenating iu . 

 denotes the Euclidean norm. The signals dealt with 

in this paper belong to the class 2 , where n   dimension- 
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al functions  x t mapping  to n for which the 

following quantity is satisfied: 2

0
( )x t dt


 ‖ ‖ , and the 

inner product of  x t  and  y t  on 
2

 is defined as 

2 0
( ), ( ) : ( ), ( )x t y t x t y t dt


     with corresponding norm 

2 2( ) : ( ), ( )x t x t x t  ‖ ‖ . 

II. PRELIMINARIES 

The time delay system   concerned here is composed 

of an assembly of L  different or similar linear time 

invariant (LTI) subsystems with their own time delay. 

The subsystems are interconnected over an undirected 

graph ( , , ) . The set of vertices is defined 

with the element { , 1,2, , }i i L  , where each i  is a 

LTI finite dimensional subsystem. The set of non-

oriented edges is defined as {( , ), }i j i j  . Each edge 

( , )i j   is weighted by ijn , which denotes the dimension 

of the output of i  flowing towards j , and 
ij ji

n n  

when i j . The symmetric matrix represents the wei- 

ghted adjacency matrix of the graph, whose elements are 

associated with the length ijn of the edge. 

The subsystem i  of the system   we considered is 

captured by the following state-space equation:  

( ) ( )

( ) ( )

( ) ( )

( ) ( )

i i i i

i iTT Th TS Td

i i i i

i i iST Sh SS Sd

i i i i

i iTz Th Sz zd

i i i i

i iTy yh Sy yd

x t x tA A A B

w t x t hA A A B

z t v tC C C D

y t d tC C C D

    
    

    
    
    
     

      (1) 

with the initial condition 

( ) ( ), [ , 0],i i ix t t t h                              (2) 

and the interconnection relationship 

         
( ) ( )

( ) ( )

ij ji

ij ji

v t w t

w t v t

   
   

   
                               (3) 

where ( ) im

ix t  is the state vector of the i -th sub-

system i , ( )i t  is the initial condition with some given 

continuous function :[ ,0]i ih   ,  ( ) id

id t   is a 

disturbance acting on subsystem i , ( ) iz

iz t   is a 

performance output, ( ), ( ) in

i iw t v t   are the overall 

interconnection signals used by i , 1( ) col ( )i j L ijw t w t  , 

1( ) col ( )i j L ijv t v t  , ( ) ip

iu t   is a control input, and 

( ) iq

iy t   is a measured output. Fig.1 is an example of a 

system   with 4L   subsystems   1,2, ,4, 3i i  . 

Based on the well-known results for the systems 

interconnected over an arbitrary graph without state time 

delay [7] and the stability definitions of delay systems [9], 

the following definitions can be given. 

 

Figure 1. Example of the system   with 4L    subsystems 

, 1,2,3,4.i i   

Definition 1: The interconnected system   is well-

posed if the two subspaces  and  satisfy  

{0},                                (4) 

where  

: {( ( ), ( ) : ( ) ( ),  

for all , 1,2, , },

: {( ( ), ( )) : col( ( ), ( )) ,

for all , 1,2, , },

ji ij

i

i i

w t v t w t v t

i j L

w t v t w t v t

i j L

   



   



     (5) 

with : Im .
i

SS
i

A

I

 
  

 
  

Definition 2: The well-posed system   is stable with 

the disturbances ( ) 0, 1,2, ,id t i L   , if, for any initial 

condition ( )i t  defined on [ ,0], 1,2, ,ih i L  , 

              *

1

lim ( , ( )) ( , ( )) 0.
L

i i i i
t i

x t t x t t 
 

                (6) 

Definition 3: Assuming the system   is well-posed 

and stable, we say that it is contractive if, for all 

( ) , 1,2, ,n

id t i L  are non-identical zeros, there 

exist 0  such that  

     2 2

2 2
1 1

( ) (1 ) ( )
L L

i i
i i

z t d t
 

  ‖ ‖ ‖ ‖                  (7) 

is satisfied under the zero initial condition. 

III. SUFFICIENT CONDITIONS FOR WELL-POSEDNESS, 

DELAY-DEPENDENT STABILITY AND 

CONTRACTIVENESS 

In this section, we shall present a sufficient condition 

to achieve well-posedness, delay-dependent stability and 

contractiveness with respected to the system  . 

In this position we state our analysis conditions.  

Theorem 1: The system  is well-posed, delay-dependent 

stable and contractive if there exist positive definite matr-

ices i im mi

T SX


 , i im m

i SR


 , i im mi

h SX


 for 1, ,i L  

and matrices 11 ij ijn n

ij SX


  12 ij ijn n

ijX


 and 22 ij ijn n

ij SX


   

for all 1, ,i L  such that  
11 22 12 * 12, ( ) ,ij ji ij jiX X X X                      (8) 
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and the following inequalities are satisfied for all 

1,2, ,i L   

                       * 0,i i i                                     (9) 

where 

11 12

12 * 22

1
0 0 0 0

0 0 0 0 0

1
0 0 0 0 0

: ,

0 0 0 0 0

0 0 0 ( ) 0 0

0 0 0 0 0 0

0 0 0 0 0 0

i i

i T h

i

i i

T i h

i

h i

ii

i i

i i

X X
h

X h X

X M
h

X X

X X

I

I

 
 

 
 
 
 
  
 
 
 
 
 
  

        (10) 

0 0 0

0 0 0

: ,

0 0 0

0 0 0

i i i i

TT Th TS Td

i i i i

i ST Sh SS Sd

i i i i

T Th S

I

A A A B

I

A A A B

I

C C C D

I

 
 
 
 
 

  
 
 
 
 
 

                                  (11) 

1 1
,: :i i

i i h i i h

i i

R X M R X
h h

       ,                     (12) 

• •
 1diag ,  : denote 11, 12, 2  2i j L ijX X     .              (13) 

Proof: From the 3 3  block of matrix *

i i i    , we 

have 

* 11 12

12 * 22
0.

( )

i i

i iSS SS

i i

X XA A

X XI I

    
    

    
                (14) 

Furthermore, summing (14) over 1,2, ,i L , we can 

get  

        

* 11 12

12 * 22
1

0.
( )

i iL
i iSS SS

i i i

X XA A

X XI I

    
    

    
            (15) 

Again, since (8) is satisfied, we obtain 

* 11 12

12 * 22
1

( ) ( )
( ( ), ( )):

( ) ( )( )

L
i ii i

i i ii i

w t w tX X
f w t v t

v t v tX X

    
     

    
   

* 11 12

12 * 22
1 1

( ) ( )
0.

( ) ( )( )

L L
ij ijij ij

i j ij ijij ij

w t w tX X

v t v tX X 

    
      

     
       (16) 

Then, we have  0  , according to Definition 1, 

i.e., the interconnected system    is well-posed. 

Since (9) is satisfied, pre- and post-multiplying (9) by 

the non-zero vector * * *( ) : ( ( ), ( ), ( ))i ig t x t v t d t and its 

transp-ose and summing over 1,2, ,i L , we can obtain 

1 1

1 1

2 ( ), ( ) ( ), ( )

( ), ( ) ( ), ( )

L L
i

i T i i i i
i i

L L
i

i i i i i i i h
i i

x t X x t x t x t

x t h M x t h x t h X x t

 

 

      

       

 

 

 

1

1
2 ( ), ( ) ( ( ), ( ))

L
i

i h i i
i i

x t X x t h f w t v t
h

    +  

* *

1 1

( ) ( ) ( ) ( ) 0.
L L

i i i i
i i

z t z t d t d t
 

                          (17) 

When ( ) 0id t  , and ( ( ), ( )) 0f w t v t  , (17) turns to  

1 1

1 1

*

1 1

2 ( ), ( ) ( ), ( )

( ), ( ) ( ), ( )

1
2 ( ), ( ) ( ) ( ) 0.

L L
i

i T i i i i
i i

L L
i

i i i i i i i h
i i

L L
i

i h i i i i
i ii

x t X x t x t x t

x t h M x t h x t h X x t

x t X x t h z t z t
h

 

 

 

     

       

      

 

 

 

     (18) 

We choose Lyapunov-Krasovskii function for the 

system  

* *

0

*

( ( ), ( )) ( ) ( ) ( ) ( )

( ) ( ) .

i

i

t

i

i i i i T i i i i

t h

t

i

i h i

h t

V x t t x t X x t x s R x s ds

x s X x s dsd









 

 





 

  (19) 

Since 0i

TX  , 0i

hX  , 0iR  , ( , ) 0iV x t  is 

guaranteed. Besides, the derivatives of ( , )iV x t , and 

summing over 1,2, ,i L , are given by 

*

1 1

* *

1 1

* *

1 1

( , ) ( ( ), ( )) 2 ( ) ( )

( ) ( ) ( ) ( )

1
( ) ( ) ( ) ( ).

L L
i

i i i i T i
i i

L L

i i i i i i i i
i i

L L
i i

i i h i h i i
i i i

V x t V x t t x t X x t

x t x t x t h M x t h

x t h X x t x t X x t h
h


 

 

 

 

    

   

 

 

 

      (20) 

According the inequality (18), we have ( , ) 0V x t  , 

which establishes the stability of the system.  

When ( ) 0id t  , for all 1,2, ,i L , along with the 

well-posedness and stability are proved, (17) yields 

* *

1 1

( , ) ( ) ( ) ( ) ( ) 0.
L L

i i i i
i i

V x t z t z t d t d t
 

                 (21) 

there must exist a positive scalar  such that 

* * *

1 1 1

( , ) ( ) ( ) ( ) ( ) ( ) ( ).
L L L

i i i i i i
i i i

V x t z t z t d t d t d t d t
  

       (22) 

Integrate (22) from 0  to   under zero initial 

condition ( ) 0, [ ,0]i it t h     for all 1,2, ,i L , then 

we export that 

* *

0 0 0
1 1

( ) ( ) (1 ) ( ) ( ) ( , ) ,
L L

i i i i
i i

z t z t dt d t d t dt V x t dt
  

 

        

that is to say  

2 2( ) (1 ) ( ) (0) ( ) 0z t d t V V     ‖ ‖ ‖ ‖ ,      (23) 

which implies that the system   is contractive. This 

completes the proof.  
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Figure 2. The system   with 3 subsystems 31 2 ,,   . 

 

Figure 3. State responses of the system. 

IV. ILLUSTRATIVE EXAMPLE 

In the following example, we consider the system   

with three subsystems 1 , 2 , 3 interconnected over an 

undirected graph as Fig. 2, and the state space matrices of 

each subsystem are given as follows: 

1

7.267 0.574 9.528 4.077 1.448 0.712

0.829 0.0768 6.275 8.118 3.358 0.673

2.005 0.018 6.459 9.071 6.110 0.266

5.083 0.114 5.423 0.030 8.418 0.517

0.279 0.362 4.652 2.430 6.800 0.604

   
 
   
 
  
 

  
    



 

2

5.476 0.285 8.089 7.327 8.451 0.127

6.274 0.036 6.396 4.974 1.358 0.439

3.532 0.737 1.731 3.300 8.084 0.233

2.854 0.141 6.019 6.461 3.981 0.123

9.818 0.987 6.549 8.336 3.103 0.130

 
 
   
 
      
 
     
     

3

5.813 0.170 6.779 9.026 6.404 0.406

4.043 0.172 5.433 4.360 7.718 0.674

.1.535 0.254 5.240 5.623 9.991 0.254

0.675 0.515 2.512 0.214 5.731 0.347

1.991 0.015 4.972 7.251 8.769 0.215

    
 
  
 
     
 

   
  

  

In the simulation, we assume that the state time delay 

of each subsystem is given by 1 2 31, 2, 1h h h   , and the 

initial condition is given by 1( ) 1, [ 1,0]t t    , 

2 ( ) 1, [ 2,0]t t      and 3( ) 1, [ 1,0],t t      respectively. 

Fig. 3 shows the state response of the system state ( )x t , 

here 1 3( ) col ( )i ix t x t  . Obviously the simulation result 

illustrates that the system   is stable. Fig. 4 shows that 

the scalar of the function: 

2 2

2 2
1 1

( ) ( ) / ( )
L L

i i
i i

f t z t d t
 

 ‖ ‖ ‖ ‖  

is less than 1 over the time t under the disturbances 
2

1( ) 2 td t e , 0.2

2 ( ) td t e , 0.04

3( ) td t e , which exhibits 

that the system   is contractive. 

 

Figure 4. The performance of the system. 

V. CONCLUSION 

In this paper, we have developed a sufficient condition 

for the well-posedness, delay-dependent stability and 

contractiveness of the time delay system interconnected 

over an undirected graph in terms of linear matrix 

inequalities (LMIs). A numerical example has been given 

to demonstrate the validity of the obtained results.  The 

next possible research topic is how to design distributed 

filters or controllers for such systems so that the resultant 

close-loop system or the filtering error system is well-

posed, stable and contractive, when the measured output 

y(t) inserts into another system (i.e. filters or controllers) 

as a control input or a disturbance.  
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