
A Proposed Architecture for a Heterogeneous

Unmanned Aerial Vehicles System

Ahmed Barnawi, Abdullah Al-Barakati, Asif Khan, Fuad Bajaber, and Omar Alhubaiti
King Abdulaziz University, Faculty of Computing and Information Technology, Jeddah- Saudi Arabia

Email: {ambarnawi, aaalbarakati, aikhan, fbajaber, oalhubaiti}@kau.edu.sa

Abstract—The Multiple Autonomous Unmanned Vehicle

Experimental Testbed (MAUVET) is a platform designed by

our research group as an open architecture platform with

open communication standards and modular software core

functions. This paper describes some aspects of the software

architecture for MAUVET, focusing on API and GUI

interfaces. The software architecture proposed in this paper

is an abstraction that hides complexity from application

developers who uses the API to interact with UAVs. The

testbed framework that uses a modular architecture, is

meant to be easily extendable, as it employs software

engineering principles such as scalability and reusability.

We also present some analysis of our graphical user

interface (GUI) that controls UAVs’ missions. We also show

how some UAVs' functions were tested in some scenarios

using UAV emulator. 

Index Terms—embedded systems, multilayered architecture,

UAV controller, unmanned aerial vehicles, test-bed.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have drawn a lot

of attention in recent years. With advancements in

wireless communications and digital electronics, design

and development of low-cost, low power, multifunctional

sensor nodes and autonomous vehicles, has become

possible. Nowadays, such devices are small, smart, and

can communicate with wires or wirelessly.

Communication can occur either within short or long

distances, with sensors of diverse types that needs low

energy [1]. Such capabilities of those sensor devices,

which include sensing, data processing, and

communicating, enable us to design sensor networks

based on collaborative effort of many nodes. Since their

processing capacity is increasing over the years,

nowadays several types of low-cost multifunction sensors

exist. In some cases, a situation needs many sensors to

sense the environment or take measurements from

surroundings. Therefore, we can create a fully adaptive

and reconfigurable network of independent agents, which

would include heterogeneous agents and other devices.

The work in [2] discussed and highlights the issue of

agent oriented software design to inspire a need for

careful methodological design of such a system. In this

work, we intend to lay the groundwork for the outlined

system by designing a real-world testbed with different

Manuscript received March 2, 2018; revised June 22, 2018.

agents equipped with communication and sensing devices

to test and develop a search scenarios application. A set

of autonomous robots will be able to form coalitions to

perform basic tasks.

In this paper, we report on the work in progress about

our developed robotic testbed ‘MAUVET’ [3], designed

to use heterogeneous robots performing coordinated tasks

as shown in Fig 1. We display the advantages of our

testbed by developing a ‘search and find’ application. In

this application, we show different system components

where we assign robotic agents to take part in the search

process. Those agents interact with system operator via

GUI interface, a part of Base Station, where operator can

design, manage, and check search process.

Figure 1. Configuration of experimental area

The testbed framework is of a modular architecture, is

easily extendable, and it features design principles like

scalability and reusability. This design abstracts software

components at a high level, and allows for incorporation

and control of diverse embedded devices. These

components communicate through provided interfaces.

We designed the testbed to be highly cohesive with

minimal coupling to enable reusing components as

needed and ensuring system heterogeneity.

In this paper, we focus on the architectural design of

the server interface. This interface connects the operator

to the system and robotic agents via a set of in-house

developed API’s. The structure of this paper is as follows:

Section II analyzes related work. Section III gives an

overview of system components. Section IV presents

base station reference software architecture. Section V

describes API and functions of the testbed. Section VI

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 7, No. 3, July 2018

119©2018 Int. J. Elec. & Elecn. Eng. & Telcomm.
doi: 10.18178/ijeetc.7.3.119-126

mailto:aikhan@kau.edu.sa

discusses API validation test strategy. Last section is

conclusions.

II. RELATED WORK

The main novelty of our project lies in the cooperative

integration of a considerable number of entities in tight

cooperation within one single networked system with

central control. The system controls this network [3] to

plan ‘search and find’ missions dynamically using

heterogeneous teams in uncertain environments. We will

further investigate such planning and coalition activities

in the current project, since the link between the two

projects is clear.

References [5]-[8] proposed several generic GUIs

suitable for a range of UAV testing and control systems

during takeoff, landing and other similar functionalities

from base station.

Daniel et al. [5] proposed a UAV based solution for

the surveillance system. The software offered full

features for dynamic allocation of tasks for UAVs via

GUI. A realistic 3D technique showed all the real-time

operations information. Ground station software helped

operators manage tasks of multiple UAVs efficiently. A

field experiment was performed with a setup having two

quadrotors with visual cameras to test the solution in a

real environment.

Alberto et al. [6] developed a Ground Control Station

(GCS) for control and navigation of multiple UAVs. The

System had two core modules, one handles UAV mission

planning, and the other controls flight. The system also

implemented features for obstacle avoidance and

formation flying. This solution used NASA's World Wind

API functionality to show UAV path planning and

formation setting directly on a 3D map interface. The

authors used an in-house simulation environment to test

the proposed method and to evaluate and measure the

functionalities and performance of the GCS. They have

integrated the famous Flight Simulator software ‘X-

Plane’ with GCS. The simulator generated multiple real-

time flight trajectories like a real situation. Thus, the

application ‘X-Plane’ is very helpful in generating visuals

of the simulated flight before a mission.

Paparazzi [7] is an open source UAV Ground Control

Station (GCS) project. It has gained some attention

among researchers. The main key feature is the real-time

visualization, monitoring and control of an unmanned

aerial vehicle. This software package supports different

brand types of UAVs. The main shortcoming of this

application is that it is not designed to support

cooperative control of multiple UAV agents.

Doran et al. [8] proposed a Human Computer

Interaction (HCI) based GUI interface for base station

operations and UAV interaction. The proposed GUI can

give crucial details of UAVs for judgment, decision-

making and tactical understanding of the use of UAVs.

The authors conducted HCI usability tests to measure

performance. Tests also covered time needed to use the

interface by participant and time needed to carry out a

given task. Researchers considered logs and errors

recorded during the task and user satisfaction level.

Researchers redesigned and retested alternatives to

achieve improved performance based on above test data

[8].

Work in [9] presented a ground control station based

on Robot Operating System (ROS). Design goals include

using as much open components as possible, handling

heterogeneous UxVs, developing a GUI monitoring and

controlling part, and using automatic flight path

generation.

Reference [10] discussed shortcomings of ROS, as in

the Dronemap project. The authors focused on offloading

processes to cloud rather than depending on onboard

processing thus enhancing computational performance

and connectivity between users and robotic agents.

ROS is a robotics middleware that includes a

collection of software frameworks for robot software

development [11]. Researchers of [12] listed several ROS

limitations. They found few points that limited scalability

of multiple robotic systems due to bandwidth and

synchronization considerations in ROS design. Thus, for

more system control and design flexibility, we choose

ROS in this paper to develop our API from scratch based

on in-house developed components.

The literature shows –among other things- that we

need to analyze UAVs data in real time during the

mission, and we need hardware abstraction to reduce

complexity. This brings us to propose a flexible

architecture that helps application developers concentrate

on application logic rather than details of low-level

complexity of UAV operation. A well-developed GUI

controls UAVs’ missions and functionalities. We

integrate all mission information a single GUI screen.

III. MAUVET SOFTWARE ANALYSIS

We have conducted software analysis as part of the

system development. In this section, we go through

system components then we sketch system’s use-case

based operational requirements.

A. System Software Components

Fig. 2 shows detailed architecture of communication

between software modules. The Software architecture of

system consists of several modules, some of them run on

robots while others run on Base Station (BS).

BS communication server is an application running on

BS and its purpose is to:

 Set up and keep communication with robots,

 Gather data from connected robots,

 Offer data and commands to robots, and

 Offer data to user applications (including user

interface).

Drone Control software of each drone communicates

with communication server on BS through the low-level

interface. Communication server collects received data,

presents it to modules on BS and allows controlling

drones from BS. Specifically, the server gives a current

position, altitude and heading for each UAV, detected

ground targets and their positions as well as telemetry

information: flight mode, current command execution,

onboard resources (battery, Wi-Fi signal level, etc.)

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 7, No. 3, July 2018

120©2018 Int. J. Elec. & Elecn. Eng. & Telcomm.

among other information. We have built a dedicated API

in C++ using socket communication interface to offer

these functionalities.

Figure 2. System communication schematics.

B. Use-case Modeling

Use-case Modeling is an essential activity of software

development and it usually begins before system design

process. It helps in visualizing system functionalities at

high-level from a user’s perspective. A use-case scenario

reflects a unique functionality of the system. Use-Case

Modeling is a stage of design that exists between system

requirements analysis and design phases [13].

Fig. 3 shows basic functionalities of our testbed. The

scenario consists of several consecutive steps, which

happen in the following sequence (Considering that

system hardware initialization has happened beforehand),

1) Operator feeds system parameters of mission via

GUI.

2) Software running on BS calculates a search plan

and assigns search areas and trajectories to UAVs

based on their types and capabilities.

3) UAVs 1, 2 and 3 (supposing we appointed those

three UAVs for this mission) start searching their

assigned areas until either they find object(s) of

interest or search finishes or user stops it.

4) (Optional) UAV 4 gives actual images from

camera and operator may control it to check

specific sectors. Based on camera images, operator

may instruct system to recalculate search plan and

system then instructs UAVs to follow the new

plan.

5) In case a UAV leaves the area for any reason, BS

recalculates search plan and instructs UAVs to

follow through.

6) Mission ends when either UAVs find all objects of

interest or search completes.

7) During mission, UAVs work in harmony as

system ensures prompt control of UAVs and

transports traffic exchanged between various

components based on programmed logic.

8) Control traffic is data sent to control behavior of

UAVs throughout the mission while transport

traffic is data feed sent from UAVs to BS, i.e.

images feed, sensor information, GPS coordinates,

target information, …, etc.

Figure 3. Use-Case diagram of high-level functionalities and actors of

the system.

Figure 4. Base station architecture overview.

IV. BASE STATION SOFTWARE ARCHITECTURE

The basic purpose of the ‘MUAVET’ system server is

to offer a central node connecting user applications with

control software running on onboard PCs of robots/UAVs.

Fig. 4 shows basic block architecture of the server. Left

side connection is TCP based and connects server to user

interface. Right-hand interface is UDP based and

connects server to UAVs. Server manages passage of

messages from client applications to UAVs and vice

versa to guarantee safe delivery of UAV commands and

other data and to optimize throughput of communication

network.

Fig. 6 shows an abstract view of GUI architecture,

focusing on the design pattern. We have developed GUI

of application based on Model View Controller (MVC)

design pattern as Fig. 5 shows. The primary reason of

using MVC [14] architecture is its ability to enable low

coupling in design by separating application’s front-end

logic from backend. By keeping back-end code into

‘Model’ and front-end code into ‘View’ and ‘Controller’

we can achieve low coupling. MVC architecture also

eases separation of input from output; ‘Controller’

handles Input, while ‘View’ handles output.

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 7, No. 3, July 2018

121©2018 Int. J. Elec. & Elecn. Eng. & Telcomm.

GUI allows operators to upload a flight plan, watch

mission data in real time like UAV’s battery, airspeed …

etc. In addition, it is capable of commanding UAVs,

updating waypoints, aborting flights, allowing a manual

override, analysis, and results generation.

Figure 5. Shows basic MVC architecture for MAUET mission planning
software

Fig. 5 above describes how each part of the ‘MAUET

Mission Planning Software’ MVC modules interacts with

other parts:

1) Operator sends a request through GUI.

‘Controller’ module intercepts this request.

2) Navigation logic of ‘Controller’ dispatches the

request to the relevant application logic in ‘Model’

3) ‘Model’ holds functions of application logic,

algorithms, data access … etc., while ‘Model’

processes requests through related application

logic, returning results to ‘Controller’ dispatcher.

4) ‘Controller’ dispatches those results then specifies

which module ‘View’ would present to client.

5) ‘View’ gives result to client application.

The platform composes of several layers as shown in

Fig. 6. Each layer is a set of services in the application.

Upper layers see bottom layers as a set of services. We

apply abstraction using APIs to reduce complexity of the

system. Developer does not need to know internal details

of the system, as they are abstract from developer’s

perspective. Developer uses API to interact with low-

level system components of the architecture by mapping

needed functionality of application using upper layers

onto specific components. Here API is an abstraction of

all system components and is the application interface of

the architecture.

There is a central server offering central point of

communication and connecting all entities, namely user

applications (including user interface) and robots.

Connection between user applications and server uses

TCP socket interface. Connection between server and

UAVs uses a datagram-based UDP protocol.

The system offers functionalities of UAV Control

software to other modules through two interfaces: A low-

level interface using a standard TCP/IP socket and GUI

application should not typically use it. The socket

interface offers an open and portable way of connecting

server and user applications written in any arbitrary

programming language.

Figure 6. Layer architecture for MAUET mission planning software

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 7, No. 3, July 2018

122©2018 Int. J. Elec. & Elecn. Eng. & Telcomm.

We have built a C++ application interface (API) above

the socket interface in form of C++ functions

encapsulated by the ‘MUAVET’ Interface class. GUI

application code can use UAV control functionalities

simply by calling function from this API. Both interfaces

are available on the server as well as on UAVs’ onboard

computers. It is up to user to decide the architecture of

the top-level system (e.g. centralized or distributed). The

only major difference between server and onboard API is

that onboard applications cannot send commands to other

UAVs.

Communication server collects received data, gives

them to modules on BS and allows control of UAVs from

BS. Specifically, Server gives a current position, altitude

and heading for each UAV, detected ground targets and

their positions as well as telemetry information: flight

mode, current command execution, onboard resources

(battery, Wi-Fi signal level … etc.). Server gives data in

an asynchronous Way. Each robot may receive control

commands from applications running on either the

onboard computer or the Base Station. Due to this

architecture, a conflict between onboard and BS

commands may arise and needs management. A similar

conflict might occur between multiple applications

running on BS or OBC.

To ensure priority to control commands coming from

BS, a local control setting (software switch) user can set

from BS is there. If enabled, it allows control of a drone

from the onboard application. If disabled, autopilot

ignores local commands. This enables operator at BS to

take over UAV control in case of onboard software

problem.

Control of UAV by user application happens on a

relatively high level in terms of GPS waypoints UAV

should travel through in mission. Autopilot takes care of

low-level control of UAV to follow designated trajectory

with minimal error. User might set maximal allowed

velocity, while autopilot may need to slow UAV down

near waypoints to decrease position errors.

Flight data logging is available both on robot’s

onboard computer and BS. There should not be a

significant difference between server and onboard logs if

all robots’ data is available on BS. On-board log is useful

for offline debugging, e.g. in situations when

communication with the Base Station is lost. It is also

possible to log all camera-captured images onboard,

while UAV only sends some of the images to BS due to

wireless traffic limitation.

The sequence diagram shown in Fig. 7 illustrates the

sequence of events that occur from mission initialization

until UAVs carry out their assigned tasks.

Figure 7. Sequence of events when UAVs carry out assigned tasks

Figure 8. State diagram of events when UAVs executes assigned tasks

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 7, No. 3, July 2018

123©2018 Int. J. Elec. & Elecn. Eng. & Telcomm.

Fig. 8, shown below, illustrates high-level view of

UAV’s state diagram when executing assigned tasks.

Showing system’s states change sequence based on

events occurring from start of initialization of a trip until

UAVs carry out assigned tasks and return to designated

home location.

V. TESTBED API AND FUNCTIONS

Our Application Programming Interface allows

sending commands to UAVs and retrieving data from

UAVs. There is a significant difference between sending

commands to a UAV and receiving data from it. API

typically sends a UAV command once and there is a

mechanism to ensure correct and prompt delivery of

commands to UAVs. Otherwise, API notifies calling

application that UAV did not receive the command. On

the other hand, API refreshes data from UAVs with every

new measurement and sends it to registered receivers

periodically.

Communication server buffers commands and will

repeatedly send them to UAVs until server receives

acknowledgement from said UAVs, or until user sends

another command canceling current one. Server notifies

users about command acknowledgements returned by

UAVs, as shown in Fig. 9.

Figure 9. UAV command retransmission and acknowledgement.

TABLE I: CORE API FUNCTIONS

Function Description Parameters

Arm

User must arm UAVs before doing
any other operation, e.g. before

starting motors or taking off. This

is a safety feature to prevent
accidental activation of the UAV.

No
parameters

Disarm
Disarm command disables UAV

until re-armed again.

No

parameters

Takeoff

A UAV on the ground starts its

motors and takes off, hovering

until some other it receives
another command.

No

parameters

Land

on

position

Description: UAV flies to target
GPS position, descends to ground

level and turns off its motors.

2D position
latitude,

longitude

Land
UAV descends and lands on
current position.

No
parameters

Hold

Position

UAV interrupts any processed

command and stops mid-air. The
current trajectory plan is

discarded, if any.

No

parameters

FlyTo

UAV will fly to the given 3D GPS
position as fast as possible while

satisfying preset maximal velocity

limit. The requested (maximal)
velocity may be set using

SetFlyVelocity command.

3D position
longitude,

latitude,

altitude

To distinguish acknowledgments to different

simultaneous commands, API gives a unique identifier

(id) to every sent command and matches

acknowledgement’s id to this id when received. API

treats acknowledgements in a manner like other data

coming from UAVs, so it does not acknowledge nor re-

send them. Table I discusses some of API’s core

functions.

VI. API VALIDATION TEST STRATEGY

We did the testing of various modules of this

application in this stage using simulation to reduce the

risk of mishap or malfunction to the actual UAVs during

flight missions.

A. Testing Environment

The system we used for this round consists of:

 Debian based Linux operating system [15]: We

selected Debian for high package compatibility and

abundance of support material.

 UAV simulator: A program written in C consisting

of UAV movement simulation and a sender/receiver

module. This program does not simulate UAV

failure due to any internal or external conditions (i.e.

simulates ideal UAV operation scenario).

 API modules: Written in Java programming

language, this part is like the API software that we

will be using on the actual implementation (i.e. with

real hardware) albeit with limited command support.

Table I, shows command support at the time of

testing.

Figure 10. Testing system model.

B. Testing Goal and Strategy

Since no failures are simulated, focus of this test was

to confirm software correctness and exact implementation

of the UAV operation modes state diagram (shown in Fig.

11) (especially the Java API part) and readiness for

deployment. We consider results satisfactory if no

software exceptions arise or any design oversights happen.

We performed black box testing for this series of

testing runs. Although we can have access to the innards

of the ‘MUAVET’ Java API and the drone’s simulator-

software (developed in-house), we have decided to test

the system from the point of view of an external user, for

when the test proves successful we can conclude that the

inner workings are in order.

The state diagram shown in Fig. 11 summarizes the

high view of different paths testing can take during

different runs.

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 7, No. 3, July 2018

124©2018 Int. J. Elec. & Elecn. Eng. & Telcomm.

Figure 11. UAV operation modes state diagram

This is a general diagram for real operation of UAVs.

For this testing scenario, both “Flying Blocked” and

“Malfunction” states were not met nor were “malfunction

detected,” “obstacle detected” or “obstacle disappeared”

transitions occur due to the absence of failure simulation

in the current version of the simulator.

Red transitions show transitions that user commands

trigger, green ones show those caused by internal or

external state changes. Note that not all transitions are

drawn for simplicity.

We conducted testing manually, i.e. user selected the

command sequence to send to tester module. This

generates the proper command format for the Java API.

We deduct success or failure of a testing run by seeing

the output that periodically appears both in the console of

the API as well as in that on UAV simulator console.

C. Sample Scenarios

A path from the state diagram was chosen (in testing,

all paths from the diagram—excluding those passing

through states or transitions we have pointed out

previously—were tested thoroughly). As per the state

diagram, Fig. 12, the following sequence of consecutive

commands creates that path.

Takeoff → Arm → Takeoff → disarm → land →

disarm.

Figure 12. State diagram for a sample test with valid commands

To test the transition sequence that system follows as

per defined path, we send some valid and some invalid

commands to the UAV. A command is considered valid

or not based on state diagram shown in Fig. 11. For

example, take-off command was sent before the UAV is

armed which is prohibited as shown in Fig. 13.

Another case is to send disarm command while UAV

flying. For the command sequence discussed earlier,

testing takes UAV through transitions 1-6 (shown in Fig.

12) in order.

Figure 13. State diagram for sample test with invalid command

Figure 14. Testing system model sample command correct order

Arm command is transition #1; Takeoff is transition #2,

until UAV reaches defined flight height (configured by

user at beginning of test (see Fig. 10) and so on.

To figure out the outcome of each command, we study

verbose output at the console. Sample output is shown in

Fig. 14 (all commands sent in order)

In conclusion, the experiment has met its goals. No

software errors or exceptions has occurred nor have we

met any logical misbehavior. We judge testing as

successful.

VII. CONCLUSIONS

In this paper, we presented a reference software

architecture for a state of the art Heterogeneous UAVs

testbed (MAUVET). These types of testbeds are

becoming essential for testing applications based on UAV

systems. The system specification describes the

architecture and software components of the system and

defines the interfaces between its components and

between system and users. The testbed uses a flexible

software architecture that is easy to extend and is scalable.

The paper also discussed the integration between the

Base Station, main server, and UAVs, and how the API

offers core UAV functionalities at a high level for

developers, who would then focus on experiment and

application design rather than low-level complexity,

which we hide from developer. Finally, a set of

experimental results were presented to illustrate the

flexibility, usefulness, and efficiency of the proposed

architecture.

ACKNOWLEDGMENT

King Abdul-Aziz City for Science and Technology

(KACST) has funded this project, under grant no. (AP -

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 7, No. 3, July 2018

125©2018 Int. J. Elec. & Elecn. Eng. & Telcomm.

35 - 162). The authors, therefore, acknowledge and thank

KACST for its technical and financial support.

REFERENCES

[1] S. Sendra, J. Floret, M. Garcia, and J.F. Toledo, “Power saving

and energy optimization techniques for wireless sensor networks,”
Journal of Communications, vol. 6, pp. 439–459, September 2011.

[2] O. Shehory and A. Sturm, Agent-Oriented Software Engineering:
Reflections on Architectures, Methodologies, Languages, and

Frameworks, New York: Springer, 2014, p. 331.

[3] A. Barnawi and A. Al-Barakati, “Design and implantation of a
search and find application on a heterogeneous robotic platform,”

Journal of Engineering Technology, vol. 6, pp. 235-239, October
2017.

[4] E. Foe, M. Kudelski, L. Gambardella, and G. A. Di Caro,

“Connectivity-aware planning of search and rescue missions,” in

Proc. 11th IEEE Int. Symp. on Safety, Security, and Rescue

Robotics, Linköping, Sweden, 2013, pp. 21–26.
[5] D. Perez, I. Maza, F. Caballero, D. Scarlatti, E. Casado, and A.

Ollero, “A ground control station for a multi-uav surveillance

system,” Journal of Intelligent and Robotic Systems, vol. 69, pp.
119-130, January 2013

[6] A. T. Angonese and P. F. F. Rosa, “Ground control station for
multiple UAVs flight simulation,” in Proc. IEEE Latin American

Robotics Symposium, Arequipa, 2013, pp. 136-141.

[7] B. Pascal, D. Antoine, G. Michel, H. Pierre-Selim, and T. Jeremy,
“The paparazzi solution,” in Proc. 2nd US-European Competition

and Workshop on Micro Air Vehicles, Sandestin, 2006, pp. 1-15.
[8] D. Cavett, M. Coker, R. Jimenez, and B. Yaacoubi, “Human

computer interface for control of unmanned aerial vehicles,” in

Proc. Systems and Information Engineering Design Symposium,
Charlottesville, 2007, pp. 1-10.

[9] J. C. Del Arco, D. Alejo, B. C. Arrue, J. A. Cobano, G. Heredia,
and A. Ollero, “Multi-UAV ground control station for gliding

aircraft,” in Proc. 23th Mediterranean Conf. on Control and

Automation, Torremolinos, 2015, pp. 36-43.
[10] A. Koubaa, B. Qureshi, M. F. Sriti, Y. Javed, and E. Tovar, “A

service-oriented cloud-based management system for the internet-
of-drones,” in Proc. IEEE Int. Conf. on Autonomous Robot

Systems and Competitions, Coimbra, 2017, pp. 1-4.

[11] Robot Operating System (2017). [Online]. Available:
http://www.ros.org/

[12] Analyzing ROS Distribution Capabilities. (2016). [Online].
Available: http://www.dcs.gla.ac.uk/research/rosie/ros-limits-

2016-08-11.html

[13] M. I. Muhairat and R. E. Al-Qutaish, “An approach to derive the

use case diagrams from an event table,” in Proc. 8th Int. Conf. on
Software Engineering Parallel and Distributed Systems,

Wisconsin, 2009, pp. 33-38

[14] D. PaulPop and A. Altar, “Designing an MVC model for rapid
web application development,” in Proc. 24th DAAAM Int. Symp.

on Intelligent Manufacturing and Automation, Zadar, 2014, pp.
1172-1179.

[15] Debian Operating System. (2018). [Online] Available:

https://www.debian.org/

Ahmed Barnawi is a full professor at the Faculty of Computing and IT,
King Abdul-Aziz University, Jeddah, Saudi Arabia, where he works

since 2007. He received his Ph.D. at the University of Bradford, UK in

2006. His research interests include robotics cognitive radios system,
next generation networks and cloud computing. He is the managing

director of KAU Cloud Computing Research Group. He is also a holder
of multiple patents in wireless communications.

Abdullah Al-Barakati is an Assistant Professor at King Abdul-Aziz
University, Saudi Arabia. He was the head of the Information Systems

Department. He received a B.Sc. (Hons) degree in Computer Science in
2004, a M.Sc. degree in Software Engineering and a Ph.D. degree in

Computer Science in 2012, from the University of Sussex, UK. His

research interests revolve on the use of Big Data and Web technologies.

Asif Irshad Khan is a Ph.D. holder and now works as a faculty
member in the Department of Computer Science at King Abdul-Aziz

University, Saudi Arabia. He has over fifteen years of experience as a

professional academician and researcher. He published several research
articles in leading journals and conferences. His current research interest

includes Software Engineering with a focus on Software Product Line
Engineering.

Fuad Bajaber received his Ph.D. from the Department of Computing,
Bradford University, UK. He received his MSc in Computer Science

from George Washington University, USA, and B.S. in Computer
Science from King Abdul-Aziz University, Saudi Arabia. Dr. Fuad is

now an assistant professor in the Department of Information

Technology at King Abdul-Aziz University where his main research
interests include design, analysis and measurement of wireless sensor

and ad hoc networks as well as cloud computing.

Omar Alhubaiti is a research assistant at King Abdul-Aziz University,

Saudi Arabia. He received his B.Sc. in Computer Science from Faculty
of Computing and Information Technology at King Abdul-Aziz

University in 2017. His research interests are computer networking,
software engineering, and robotic systems.

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 7, No. 3, July 2018

126©2018 Int. J. Elec. & Elecn. Eng. & Telcomm.

http://www.dcs.gla.ac.uk/research/rosie/ros-limits-2016-08-11.html
http://www.dcs.gla.ac.uk/research/rosie/ros-limits-2016-08-11.html
https://www.debian.org/
https://www.debian.org/

