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Abstract—With the increasing penetration of renewable 

Distributed Generation (DG), it is important to assess the 

Maximum Hosting Capacity (MHC) in active distribution 

networks. Active Network Management (ANM) such as 

coordinated voltage control, reactive power compensation, 

DG curtailment, DG power factor control, network 

reconfiguration and demand response can play an 

important role in increasing the MHC. The MHC evaluation 

problem considering all the above elements of ANM can be 

formulated as a mixed integer nonlinear programming 

model. However, this original nonconvex model cannot 

guarantee convergence to optimality. This paper proposes 

the mixed integer second-order cone programming model 

for evaluating the MHC, by using exact linearization and 

second-order cone relaxation. The modified IEEE 33-bus 

test system is used to demonstrate the effectiveness of the 

proposed model and analyze the effect of each ANM element 

on the MHC increase. The results show that when 

considering all the above elements of ANM, the gain of the 

MHC is greater than 62%. 

 

Index Terms—distributed generation,  maximum hosting 

capacity, active network management, mixed integer 

second-order cone programming  

I. INTRODUCTION 

In recent years, renewable Distributed Generation (DG) 

(e.g., photovoltaic, wind, etc.) has been considered as a 

promising solution to global energy crisis and serious 

environmental problems, and significant efforts have 

been made in many countries to promote the installation 

of renewable DGs to the electricity networks, especially 

distribution networks [1].  

However, increasing the renewable DG penetration 

brings various negative effects on the operating of 

distribution networks such as voltage fluctuation, reverse 

power flow, network loss increase, etc. Moreover, the 

power output of renewable DGs is unstable due to 

intermittency of Renewable Energy Sources (RES). 

These effects will restrict the DG integration [2]. The 
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main role of Distribution Network Operator (DNO) is to 

maintain the efficiency and security of the network. 

Therefore, it is essential for the DNO to evaluate the 

Maximum Hosting Capacity (MHC) of renewable DGs 

which can be accommodated in distribution networks 

without violating the operational constraints such as 

current and voltage limits, etc.  

The Active Network Management (ANM) is known to 

be the one of the solution to the operational constraints 

violation caused by high penetration of renewable DGs. 

The major ANM schemes include coordinated voltage 

control of On-Load Tap Changers (OLTC), DG Power 

Factor Control (PFC), Reactive Power Compensation 

(RPC), DG curtailment and network reconfiguration (NR) 

and Demand Response (DR) [3]. Several ANM schemes 

have been proposed to increase the MHC of DGs [4]-[16]. 

In [4] and [5], multi-stage and stochastic mathematical 

model is proposed to determine the optimal sizing, timing 

and placement of renewable DGs in coordination with 

energy storage systems and reactive power sources. In [6], 

a stochastic multi-objective optimization model is 

proposed to maximize the hosting capacity. In [7], the 

two-stage adjustable robust optimization is employed to 

deal with the uncertainties of load demands and DG 

outputs. In [8], an MHC evaluation method considering 

the robust optimal operation of OLTCs and static var 

compensators (SVCs) is proposed. In [9], relaxing 

radiality constraints, a network reconfiguration scheme is 

presented to select the best network topology to 

maximize allowable DG penetration. In [10], a multi-

period OPF is proposed to investigate the potential 

benefits from adopting static and dynamic 

reconfiguration as options to increase the MHC. In [11], a 

model based on cost-benefit analysis is proposed to 

maximize the benefit of the DNO and wind farm owner. 

In [12], a bi-level programming model for distributed 

wind generation planning under ANM is proposed. In 

[13], a multi-period OPF is proposed to investigate the 

MHC considering energy curtailment, OLTC and power 

factor control as the ANM. 
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TABLE I.  RECENT RELATED WORKS FOR MAXIMIZING HOSTING CAPACITY OF DGS 

 

Additionally, in [14]-[16], the DR is considered to 

increase the MHC. To the best of our knowledge, as 

shown in Table I, no work in the literature considers all 

the above elements of ANM and analyzes the effect of 

each ANM element on the MHC increase. Therefore, this 

paper proposes the evaluation model for the MHC 

considering all the above elements of ANM.  The MHC 

evaluation problem can be formulated as a Mixed Integer 

Nonlinear Programming (MINLP) model and can be 

solved by heuristic or metaheuristic techniques. However, 

these approaches cannot guarantee optimality and their 

parameters must be tuned by trial and error. This paper 

transforms the original nonconvex model into Mixed 

Integer Second-Order Cone Programming (MISOCP) 

model by using linearization and second-order cone 

relaxation. Because of the convexity, the proposed model 

can guarantee to convergence to optimality and can be 

solved efficiently with commercial solvers. Furthermore, 

this paper analyzes the effect of each ANM element on 

the increase of MHC, by using our proposed model. 

II. PROBLEM FORMULATION 

The aim of the optimization problem is to evaluate the 

MHC of DG that can be accommodated by the 

distribution networks. This section formulates the MHC 

evaluation problem considering ANM. Using the network 

model (DistFlow equations) first introduced in [17], the 

optimization problem is formulated as a MINLP problem. 

Moreover, by introducing two new variables 𝐼𝑖𝑗,𝑡
𝑠𝑞𝑟

: = 𝐼𝑖𝑗,𝑡
2  

and 𝑉𝑖,𝑡
𝑠𝑞𝑟

= 𝑉𝑖,𝑡
2  which respectively represent the square 

of current and voltage magnitude, the problem can be 

modeled as follows.  

(MINLP model)  

max ∑ 𝑃𝑖
𝑑𝑔,𝑐𝑎𝑝

𝑖∈Ω𝑑𝑔
                             (1) 

subject to switch status constraints: ∀𝑗 ∈ 𝑁(𝑖), ∀𝑖 ∈
𝛺𝑏𝑢𝑠, 𝑡 ∈ 𝛺𝑇 

𝑢𝑖𝑗,𝑡 = 𝑢𝑗𝑖,𝑡                                  (2) 

where 𝛺𝑑𝑔  is the sets of candidate buses for DG 

installation, and 𝑃𝑖
𝑑𝑔,𝑐𝑎𝑝

 is the active power capacity of 

DG in bus 𝑖.  

𝑢𝑖𝑗,𝑡 ∈ {0,1}                                    (3) 

where Ω𝑏𝑢𝑠  is the set of buses (i.e., Ω𝑏𝑢𝑠 =
{0, … , |Ω𝑏𝑢𝑠|}), and 𝑁(𝑖) is the set of buses connected to 

bus 𝑖, and Ω𝑇  is the set of operating time, and 𝑢𝑖𝑗,𝑡  is a 

binary variable which represent the switch status: equals 

1 if branch (𝑖, 𝑗) is connected; otherwise equals 0.  

Power balance constraints ∀𝑗 ∈ 𝛺𝑏𝑢𝑠, 𝑡 ∈ 𝛺𝑇 

∑ (𝑢𝑖𝑗,𝑡𝑃𝑖𝑗,𝑡 −
1

2
𝑟𝑖𝑗𝑢𝑖𝑗,𝑡𝐼𝑖𝑗,𝑡

𝑠𝑞𝑟
)𝑖∈𝑁(𝑗) + 𝑃𝑗,𝑡 = 0          (4) 

∑ (𝑢𝑖𝑗,𝑡𝑄𝑖𝑗,𝑡 −
1

2
𝑥𝑖𝑗𝑢𝑖𝑗,𝑡𝐼𝑖𝑗,𝑡

𝑠𝑞𝑟
)𝑖∈𝑁(𝑗) + 𝑄𝑗,𝑡 = 0        (5) 

𝑃𝑖𝑗,𝑡
2 + 𝑄𝑖𝑗,𝑡

2 = 𝑉𝑖,𝑡
𝑠𝑞𝑟

𝐼𝑖𝑗,𝑡
𝑠𝑞𝑟

,   ∀𝑖 ∈ 𝑁(𝑗)                       (6) 

𝑃𝑖𝑗,𝑡 = −𝑃𝑗𝑖,𝑡 , 𝑄𝑖𝑗,𝑡 = −𝑄𝑗𝑖,𝑡 , 𝐼𝑖𝑗,𝑡
𝑠𝑞𝑟

= 𝐼𝑗𝑖,𝑡
𝑠𝑞𝑟

,   ∀𝑖 ∈ 𝑁(𝑗)    (7) 

where 𝑃𝑖𝑗,𝑡  and 𝑄𝑖𝑗,𝑡  are active and reactive power 

flowing from bus 𝑖  to bus 𝑗  at time 𝑡 , respectively, 𝑃𝑗,𝑡 

and 𝑄𝑗,𝑡 are active and reactive power injection onto bus 𝑗 

at time 𝑡, respectively, and 𝑟𝑖𝑗  and 𝑥𝑖𝑗 are resistance and 

reactance from bus 𝑖 to bus 𝑗 at time 𝑡, respectively. Note 

that 𝑟𝑖𝑗 = 𝑟𝑗𝑖  and 𝑥𝑖𝑗 = 𝑥𝑗𝑖 . Illustive power flows are 

shown in Fig. 1.   

 

Figure 1. Illusive power flows with two nodes. 

Power injection constraints ∀𝑗 ∈ 𝛺𝑏𝑢𝑠, 𝑡 ∈ 𝛺𝑇 

𝑃𝑖,𝑡 = 𝑃𝑖,𝑡
𝑠𝑠 + 𝑃𝑖,𝑡

𝑑𝑔
− 𝑃𝑖,𝑡

𝑑 − 𝑃𝑖,𝑡
𝑐𝑢𝑟                   (8) 

𝑄𝑖,𝑡 = 𝑄𝑖,𝑡
𝑠𝑠 + 𝑄𝑖,𝑡

𝑑𝑔
− 𝑄𝑖,𝑡

𝑑 + 𝑄𝑖,𝑡
𝑠𝑣𝑐                   (9) 

Year Reference RES DR Curtailment OLTC RPC PFC NR Formulation 

2017 [4], [5] WT&PV    √ √ √ MINLP 

2017 [6] WT  √   √  MINLP 

2017 [14] WT √ √   √  NLP 

2017 [7] PV   √ √ √ √ MILP 

2016 [8] PV   √ √   MILP 

2016 [9] unspecified      √ MINLP 

2016 [15] PV √      MINLP 

2015 [16] WT √ √  √ √  MINLP 

2015 [10] WT  √ √  √ √ MINLP 

2014 [11] WT  √ √ √ √  NLP 

2013 [12] WT  √ √ √ √  MINLP 

2011 [13] WT  √ √  √  NLP 

2018 Ours PV √ √ √ √ √ √ MISOCP 
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where 𝑃𝑖,𝑡
𝑠𝑠 and 𝑄𝑖,𝑡

𝑠𝑠 are active and reactive power injected 

from substation onto bus 𝑖  across the OLTC at time 𝑡 , 

respectively, and 𝑃𝑖,𝑡
𝑑𝑔

 and 𝑄𝑖,𝑡
𝑑𝑔

 are active and reactive 

power outputs of DGs in bus 𝑖 at time 𝑡, respectively, and 

𝑃𝑖,𝑡
𝑑  and 𝑄𝑖,𝑡

𝑑  are active and reactive power demand in bus 

𝑖 in the presence of DR at time 𝑡, respectively, and 𝑃𝑖,𝑡
𝑐𝑢𝑟  

is the curtailed active power of DGs in bus 𝑖 at time 𝑡, 

and 𝑄𝑖,𝑡
𝑠𝑣𝑐  is reactive power output of SVC in bus 𝑖 at time 

𝑡.  

Branch equation constraints∀𝑗 ∈ 𝑁(𝑖), ∀𝑖 ∈ 𝛺𝑏𝑢𝑠, 𝑡 ∈ 𝛺𝑇 

𝑉𝑖,𝑡
𝑠𝑞𝑟

− 𝑉𝑗,𝑡
𝑠𝑞𝑟

= 2(𝑟𝑖𝑗𝑢𝑖𝑗,𝑡𝑃𝑖𝑗,𝑡 + 𝑥𝑖𝑗𝑢𝑖𝑗,𝑡𝑄𝑖𝑗,𝑡)

− 𝑧𝑖𝑗
2 𝐼𝑖𝑗,𝑡

𝑠𝑞𝑟
 

(10) 

where 𝑧𝑖𝑗 = 𝑟𝑖𝑗 + 𝑗𝑥𝑖𝑗 is the impedance from bus 𝑖 to bus 

𝑗. These constraints can be derived from Ohm’s law.  

Voltage constraints ∀𝑗 ∈ 𝛺𝑏𝑢𝑠, 𝑡 ∈ 𝛺𝑇 

 (𝑉𝑚𝑖𝑛)2 ≤ 𝑉𝑖,𝑡
𝑠𝑞𝑟

≤ (𝑉𝑚𝑎𝑥)2 (11) 

where 𝑉𝑚𝑖𝑛  and 𝑉𝑚𝑎𝑥  are minimum and maximum 

voltage magnitude, respectively.  

Current constraints 

 0 ≤ 𝐼𝑖𝑗,𝑡
𝑠𝑞𝑟

≤ (𝐼max)2 (12) 

where 𝐼max is the maximum current magnitude.  

OLTC constraints of transformer   

𝑉0,𝑡
𝑠𝑞𝑟

= (𝛾𝑡
𝑡𝑎𝑝

)2(𝑉𝑠𝑠)2                                     (13) 

𝛾𝑡
𝑡𝑎𝑝

= 𝛾𝑡𝑎𝑝,𝑚𝑖𝑛 + 𝛿𝑡
𝑡𝑎𝑝

Δ𝛾                              (14) 

0 ≤ 𝛿𝑡
𝑡𝑎𝑝

≤ 𝛿𝑡𝑎𝑝,𝑚𝑎𝑥                                       (15) 

Δ𝛾 = (𝛾𝑡𝑎𝑝,𝑚𝑎𝑥 − 𝛾𝑡𝑎𝑝,𝑚𝑖𝑛)/𝛿𝑡𝑎𝑝,𝑚𝑎𝑥            (16) 

𝛿𝑡
𝑡𝑎𝑝

∈ {integer}                                             (17) 

where 𝑉𝑠𝑠  is a constant representing the substation 

voltage, and 𝛾𝑡
𝑡𝑎𝑝

 is the turns ratio of the transformer at 

time 𝑡 , and 𝛾𝑡𝑎𝑝,𝑚𝑖𝑛  and 𝛾𝑡𝑎𝑝,𝑚𝑎𝑥  are minimum and 

maximum turns ratios of the transformer, and 𝛿𝑡
𝑡𝑎𝑝

 is an 

integer variable that represents the actual tap position of 

the tap changer at time 𝑡, and 𝛿𝑡𝑎𝑝,𝑚𝑎𝑥 is the total number 

of taps of the OLTC [18, 19].  

DG operation constraints ∀𝑖 ∈ 𝛺𝑑𝑔, 𝑡 ∈ 𝛺𝑇 

𝑃𝑖,𝑡
𝑑𝑔

= 𝑤𝑡
𝑑𝑔

𝑃𝑖
𝑑𝑔,𝑐𝑎𝑝

                              (18) 

−𝑃𝑖,𝑡
𝑑𝑔

tan ( cos−1( 𝜃𝑙𝑑)) ≤ 𝑄𝑖,𝑡
𝑑𝑔

≤ 𝑃𝑖,𝑡
𝑑𝑔

tan ( cos−1( 𝜃𝑙𝑎𝑔)) 

(19) 

where 𝑤𝑡
𝑑𝑔

∈ [0: 1]  is the scalar which represents the 

generation level of DGs at time 𝑡  relative to the DG 

capacity, and 𝜃𝑙𝑑  and 𝜃𝑙𝑎𝑔  are the angle of leading and 

lagging power factor, respectively. 

Curtailed energy constraints ∀𝑖 ∈ 𝛺𝑑𝑔, 𝑡 ∈ 𝛺𝑇 

0 ≤ 𝑃𝑖,𝑡
𝑐𝑢𝑟 ≤ 𝑃𝑖,𝑡

𝑑𝑔
                                 (20) 

∑ 𝑃𝑖,𝑡
𝑐𝑢𝑟

𝑡∈Ω𝑇
Δ𝑡 ≤ 𝛼𝑐𝑢𝑟 ∑ 𝑃𝑖,𝑡

𝑑𝑔
𝑡∈Ω𝑇

Δ𝑡                  (21) 

where Δ𝑡 is the time duration of each time interval and 

𝛼𝑐𝑢𝑟  is the maximum percentage of allowed energy 

curtailment. 

Load shifting constraints of DR ∀𝑖 ∈ 𝛺𝑑 , 𝑡 ∈ 𝛺𝑇  

�̄�𝑖,𝑡
𝑑 (1 − 𝛽𝑑𝑟,𝑚𝑖𝑛) ≤ 𝑃𝑖,𝑡

𝑑 ≤ �̄�𝑖,𝑡
𝑑 (1 + 𝛽𝑑𝑟,𝑚𝑎𝑥)       (22) 

�̄�𝑖,𝑡
𝑑 (1 − 𝛽𝑑𝑟,𝑚𝑖𝑛) ≤ 𝑄𝑖,𝑡

𝑑 ≤ �̄�𝑖,𝑡
𝑑 (1 + 𝛽𝑑𝑟,𝑚𝑎𝑥)     (23) 

∑ 𝑃𝑖,𝑡
𝑑

𝑡∈Ω𝑇
Δ𝑡 = ∑ �̄�𝑖,𝑡

𝑑
𝑡∈Ω𝑇

Δ𝑡                    (24) 

∑ 𝑄𝑖,𝑡
𝑑

𝑡∈Ω𝑇
Δ𝑡 = ∑ �̄�𝑖,𝑡

𝑑
𝑡∈Ω𝑇

Δ𝑡                   (25) 

where Ω𝑑 is the set of demand buses, and �̄�𝑖,𝑡
𝑑  and �̄�𝑖,𝑡

𝑑  are 

original active and reactive power demand before DR 

participation in bus 𝑖 at time 𝑡, respectively, and 𝛽𝑑𝑟,𝑚𝑖𝑛 

and 𝛽𝑑𝑟,𝑚𝑎𝑥 are minimum and maximum limit of DR.  

Network radiality constraints 𝑡 ∈ 𝛺𝑇 

∑ 𝑢𝑖𝑗,𝑡(𝑖,𝑗)∈Φ𝑏𝑟
= |Ω𝑑| − |Ω𝑠𝑠|                         (26) 

𝑢𝑖𝑗 = 1,    ∀𝑗 ∈ 𝑁(𝑖), ∀𝑖 ∈ Ω𝑠𝑠                         (27) 

𝑣𝑖𝑗,𝑡 ∈ {0,1},   ∀𝑗 ∈ 𝑁(𝑖), ∀𝑖 ∈ Ω𝑏𝑢𝑠                (28) 

𝑣𝑖𝑗,𝑡 + 𝑣𝑖𝑗,𝑡 = 𝑢𝑖𝑗,𝑡 ,    ∀𝑗 ∈ 𝑁(𝑖), ∀𝑖 ∈ Ω𝑏𝑢𝑠     (29) 

∑ 𝑣𝑖𝑗,𝑡𝑗∈𝑁(𝑖) = 1,    ∀𝑖 ∈ Ω𝑏𝑢𝑠 ∖ {0}                 (30) 

𝑣0𝑗,𝑡 = 0,    ∀𝑗 ∈ 𝑁(0)                                     (31) 

where Φ𝑏𝑟  is the set of branches. Note that the branch 

(𝑖, 𝑗) and (𝑗, 𝑖) are not distinguished. Only (26) and (27) 

cannot ensure the radiality of the network. Thus, it is 

necessary to consider additional conditions, which are 

sufficient to guarantee network radiality. Here, 

introducing two binary variables 𝑣𝑖𝑗,𝑡 , 𝑣𝑗𝑖,𝑡 , such 

additional conditions (28)-(31) are added. Equation (29) 

shows that a branch (𝑖, 𝑗) is in the spanning tree (𝑢𝑖𝑗,𝑡 =

1) if either bus 𝑗 is the parent of bus 𝑖  (𝑣𝑖𝑗,𝑡 = 1), or bus 

𝑖 is the parent of bus 𝑗  (𝑣𝑗𝑖,𝑡 = 1). Equation (30) means 

that all buses except the substation have only one parent. 

Also, (31) indicates that the substation bus has no parents. 

When (26)-(31) are satisfied, it is guaranteed that 

distribution network corresponds to a spanning tree 

connected to the substation, regardless of the direction of 

power flow [20].  

Reactive power constraitns of SVC ∀𝑖 ∈ 𝛺𝑠𝑣𝑐 , 𝑡 ∈ 𝛺𝑇 

 −𝑄𝑖
𝑠𝑣𝑐,𝑐𝑎𝑝

≤ 𝑄𝑖,𝑡
𝑠𝑣𝑐 ≤ 𝑄𝑖

𝑠𝑣𝑐,𝑐𝑎𝑝
 (32) 

where Ω𝑠𝑣𝑐  is the set of buses at which SVCs have been 

installed, and 𝑄𝑖
𝑠𝑣𝑐,𝑐𝑎𝑝

 is the reactive power capacity of 

SVC in bus 𝑖.   
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In this model, the decision variables are as follows:  

Continuous variables:   

𝑃𝑖𝑗,𝑡 , 𝑄𝑖𝑗,𝑡 , 𝑃𝑖,𝑡 , 𝑄𝑖,𝑡 , 𝑃𝑖,𝑡
𝑠𝑠, 𝑄𝑖,𝑡

𝑠𝑠 , 𝑃𝑖,𝑡
𝑑𝑔

, 𝑄𝑖,𝑡
𝑑𝑔

, 𝑃𝑖,𝑡
𝑑 , 𝑄𝑖,𝑡

𝑑 , 

𝑃𝑖,𝑡
𝑐𝑢𝑟 , 𝑄𝑖,𝑡

𝑠𝑣𝑐 , 𝑃𝑖
𝑑𝑔,𝑐𝑎𝑝

, 𝐼𝑖𝑗,𝑡
𝑠𝑞𝑟

, 𝑉𝑖,𝑡
𝑠𝑞𝑟

, 𝛾𝑡
𝑡𝑎𝑝

. 

Integer variable is 𝛿𝑡 and Binary variable is 𝑢𝑖𝑗,𝑡.  

III. PROPOSED OPTIMIZATION MODEL 

The formulation of the MHC evaluation problem 

represented by (1)-(32) is a nonconvex MINLP model. 

However, due to its nonconvexity ((4)-(6), (10), (13) and 

(14)), it is hard to solve this problem or guarantee the 

convergence to optimality. This paper introduces 

convexification of these nonconvex constraints and 

changes the original nonconvex model into MISOCP 

model.  

A. Linearization of Bilinear Constraints 

In this subsection, nonconvex constraints (4), (5) and 

(10) are linearized. These constraints are nonconvex due 

to the presence of the bilinear terms 𝑢𝑖𝑗,𝑡𝑃𝑖𝑗,𝑡 , 𝑢𝑖𝑗,𝑡𝑄𝑖𝑗,𝑡 

and 𝑢𝑖𝑗,𝑡𝐼𝑖𝑗,𝑡
𝑠𝑞𝑟

. In order to linearize them, the disjunctive 

constraints are used as follows [19]: ∀𝑖 ∈ Ω𝑏𝑢𝑠, ∀𝑗 ∈
𝑁(𝑖), 𝑡 ∈ Ω𝑇   

−𝑢𝑖𝑗,𝑡 ⋅ 𝑆𝑚𝑎𝑥 ≤ 𝑃𝑖𝑗,𝑡 ≤ 𝑢𝑖𝑗,𝑡 ⋅ 𝑆𝑚𝑎𝑥            (33) 

−𝑢𝑖𝑗,𝑡 ⋅ 𝑆𝑚𝑎𝑥 ≤ 𝑄𝑖𝑗,𝑡 ≤ 𝑢𝑖𝑗,𝑡 ⋅ 𝑆𝑚𝑎𝑥           (34) 

0 ≤ 𝐼𝑖𝑗,𝑡
𝑠𝑞𝑟

≤ 𝑢𝑖𝑗,𝑡 ⋅ (𝐼𝑚𝑎𝑥)2                (35) 

where 𝑆𝑚𝑎𝑥 is maximum apparent power. By introducing 

(33)-(35), 𝑢𝑖𝑗,𝑡𝑃𝑖𝑗,𝑡 , 𝑢𝑖𝑗,𝑡𝑄𝑖𝑗,𝑡 and 𝑢𝑖𝑗,𝑡𝐼𝑖𝑗,𝑡
𝑠𝑞𝑟

 can be replaced 

by 𝑃𝑖𝑗,𝑡 , 𝑄𝑖𝑗,𝑡 and 𝐼𝑖𝑗,𝑡
𝑠𝑞𝑟

, respectively. Therefore, the power 

balance constraints ((4) and (5)) and the part of branch 

equation constraints (10) can be rewritten as follows: 

∀𝑗 ∈ Ω𝑏𝑢𝑠, 𝑡 ∈ Ω𝑇   

∑ (𝑃𝑖𝑗,𝑡 −
1

2
𝑟𝑖𝑗𝐼𝑖𝑗,𝑡

𝑠𝑞𝑟
)𝑖∈𝑁(𝑗) + 𝑃𝑗,𝑡 = 0            (36) 

∑ (𝑄𝑖𝑗,𝑡 −
1

2
𝑥𝑖𝑗𝐼𝑖𝑗,𝑡

𝑠𝑞𝑟
)𝑖∈𝑁(𝑗) + 𝑄𝑗,𝑡 = 0            (37) 

𝑉𝑖,𝑡
𝑠𝑞𝑟

− 𝑉𝑗,𝑡
𝑠𝑞𝑟

≤ (1 − 𝑢𝑖𝑗,𝑡)((𝑉𝑚𝑎𝑥)2 − (𝑉𝑚𝑖𝑛)2) 

+2(𝑟𝑖𝑗𝑃𝑖𝑗,𝑡 + 𝑥𝑖𝑗𝑄𝑖𝑗,𝑡) − 𝑧𝑖𝑗
2 𝐼𝑖𝑗,𝑡

𝑠𝑞𝑟
,      ∀𝑖 ∈ 𝑁(𝑗)    (38) 

𝑉𝑖,𝑡
𝑠𝑞𝑟

− 𝑉𝑗,𝑡
𝑠𝑞𝑟

≥ −(1 − 𝑢𝑖𝑗,𝑡)((𝑉𝑚𝑎𝑥)2 − (𝑉𝑚𝑖𝑛)2) 

+2(𝑟𝑖𝑗𝑃𝑖𝑗,𝑡 + 𝑥𝑖𝑗𝑄𝑖𝑗,𝑡) − 𝑧𝑖𝑗
2 𝐼𝑖𝑗,𝑡

𝑠𝑞𝑟
,      ∀𝑖 ∈ 𝑁(𝑗)    (39) 

After the above transformation, the remaining 

nonconvex constraints in the original MINLP model are 

(6) and (13). 

B. Linearization of OLTC Constraints 

This subsection linearizes the nonconvex constraints 

(13). These constraints are nonconvex due to the presence 

of the square of the variable (𝛾𝑡
𝑡𝑎𝑝

)2. In order to linearize 

it, (14) are rewritten by the binary expansion scheme as 

follows: 𝑡 ∈ Ω𝑇   

𝛾𝑡
𝑡𝑎𝑝

= 𝛾𝑡𝑎𝑝,𝑚𝑖𝑛 + Δ𝛾 ∑ 2𝑛𝐿
𝑛=0 𝜆𝑛,𝑡

𝑡𝑎𝑝
              (40) 

∑ 2𝑛𝐿
𝑛=0 𝜆𝑛,𝑡

𝑡𝑎𝑝
≤ 𝛿𝑡𝑎𝑝,𝑚𝑎𝑥                               (41) 

𝜆𝑛,𝑡
𝑡𝑎𝑝

∈ {0,1},      ∀𝑛 ∈ {0, … , 𝐿}                     (42) 

where 𝜆𝑛,𝑡
𝑡𝑎𝑝

 is a binary variable and L is the length of the 

binary expression of 𝛿𝑡𝑎𝑝,𝑚𝑎𝑥. Multiplying both sides of 

(40) by (𝑉𝑠𝑠)2  and defining new variables 𝜇𝑛,𝑡
𝑡𝑎𝑝

=

𝜆𝑛,𝑡
𝑡𝑎𝑝

𝛾𝑛,𝑡
𝑡𝑎𝑝

 , (40) can be represented as follows:𝑡 ∈ Ω𝑇   

𝑉0,𝑡
𝑠𝑞𝑟

= (𝑉𝑠𝑠)2𝛾𝑡𝑎𝑝,𝑚𝑖𝑛𝛾𝑡
𝑡𝑎𝑝

+ 

(𝑉𝑠𝑠)2Δ𝛾 ∑ 2𝑛
𝑛∈Ω𝑡𝑎𝑝

𝜇𝑛,𝑡
𝑡𝑎𝑝

                 (43) 

Here, introducing a positive large number 𝑀, 𝜇𝑛,𝑡
𝑡𝑎𝑝

=

𝜆𝑛,𝑡
𝑡𝑎𝑝

𝛾𝑛,𝑡
𝑡𝑎𝑝

 can be equivalently replaced as follows [18]: 

𝑡 ∈ Ω𝑇 , ∀𝑛 ∈ {0, … , 𝐿}  

0 ≤ 𝛾𝑡
𝑡𝑎𝑝

− 𝜇𝑛,𝑡
𝑡𝑎𝑝

≤ (1 − 𝜆𝑛,𝑡
𝑡𝑎𝑝

)𝑀              (44) 

0 ≤ 𝜇𝑛,𝑡
𝑡𝑎𝑝

≤ 𝜆𝑛,𝑡
𝑡𝑎𝑝

𝑀                       (45) 

By performing the above transformation, the 

nonconvex constraint (13) can be replaced by mixed 

integer linear constraints (40)-(42) and (43)-(45).  

C. Second-order cone relaxation 

In this subsection, nonconvex equality constraints (6) 

are transformed into the second-order cone constraints 

shown in the following equations [21]: ∀𝑗 ∈ 𝑁(𝑖), ∀𝑖 ∈
Ω𝑏𝑢𝑠, 𝑡 ∈ Ω𝑇   

 𝑃𝑖𝑗,𝑡
2 + 𝑄𝑖𝑗,𝑡

2 ≤ 𝑉𝑖,𝑡
𝑠𝑞𝑟

𝐼𝑖𝑗,𝑡
𝑠𝑞𝑟

 (46) 

The relaxed constraints (46) can be written as the 

following convex second-order cone constraints.  

‖

2𝑃𝑖𝑗,𝑡

2𝑄𝑖𝑗,𝑡

𝐼𝑖𝑗,𝑡
𝑠𝑞𝑟

− 𝑉𝑖,𝑡
𝑠𝑞𝑟

‖

2

≤ 𝐼𝑖𝑗,𝑡
𝑠𝑞𝑟

+ 𝑉𝑖,𝑡
𝑠𝑞𝑟

              (47) 

D. MISOCP Model for MHC 

After the above transformation such as linearization 

and second-order cone relaxation (3.1-3.3), the MINLP 

model for MHC given by objective function and 

constraints (1)-(32) becomes the following MISOCP 

model.  

(MISOCP model)  

max ∑ 𝑃𝑖
𝑑𝑔,𝑐𝑎𝑝

𝑖∈Ω𝑑𝑔
                     (48) 

subject to 

・Current constraints given by (35) 

・OLTC constraints of transformer given by (16), (40)-

(42), (43)-(45) 

・DG operation constraints given by (18) and (19) 

・Curtailed energy constraints of DGs given by (20) and 

(21) 

・Power injection constraints given by (8) and (9) 

・Branch equation constraints given by (38) and (39) 

・Voltage constraints given by (35) 
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・Power balance constraints given by (7), (33), (34), (36), 

(37) and (47)  

・Switch status constraints given by (2) and (3) 

・Load shifting constraints of DR given by (22)-(25) 

・Network radiality constraints given by (26)-(31) 

・Reactive power constraints of SVC given by (32) 

In this model, the decision variables are as follows:  

Continuous variables: 

𝑃𝑖𝑗,𝑡 , 𝑄𝑖𝑗,𝑡 , 𝑃𝑖,𝑡 , 𝑄𝑖,𝑡 , 𝑃𝑖,𝑡
𝑠𝑠 , 𝑄𝑖,𝑡

𝑠𝑠 , 𝑃𝑖,𝑡
𝑑𝑔

, 𝑄𝑖,𝑡
𝑑𝑔

, 𝑃𝑖,𝑡
𝑑 , 𝑄𝑖,𝑡

𝑑 , 

𝑃𝑖,𝑡
𝑐𝑢𝑟 , 𝑄𝑖,𝑡

𝑠𝑣𝑐 , 𝑃𝑖
𝑑𝑔,𝑐𝑎𝑝

, 𝐼𝑖𝑗,𝑡
𝑠𝑞𝑟

, 𝑉𝑖,𝑡
𝑠𝑞𝑟

, 𝛾𝑡
𝑡𝑎𝑝

, 𝜇𝑛,𝑡
𝑡𝑎𝑝

. 

Binary variables: 𝑢𝑖𝑗,𝑡 , 𝜆𝑛,𝑡
𝑡𝑎𝑝

.  

IV. NUMERICAL SIMULATION 

The modified IEEE 33-bus test system from [22] is 

selected for our numerical simulations. The proposed 

optimization model was solved using the commercial 

solver Gurobi Optimizer 7.5.2 on a computer with a 2.3 

GHz Intel core i7 processor and 256GB of RAM. 

A. Test System 

As shown in Fig. 2, the modified IEEE 33-bus test 

system is radial distribution network with one substation, 

which has 33 buses, 37 branches, 32 sectionalizing 

switches, 5 tie switches. The voltage of substation (𝑉𝑠𝑠) 

is 12.66kV and the peak load is 3.175MW and 2.3MVar. 

In this simulation, candidate buses for DG installation are 

bus 5, bus 10, bus 15, bus 21, bus 24, bus 27 and bus 30, 

and photovoltaics (PV) are chosen as a type of DGs. Also, 

buses at which SVCs have been installed are bus 17 and 

bus 32. The time segment are assigned intervals of 1 hour 

for a 24 hour periods. The other simulation parameters 

are shown in Table II.    

 
Figure 2. Modified IEEE 33-bus test system. 

TABLE II.  SIMULATION PARAMETERS 

Current limit 𝐼𝑚𝑎𝑥 300A 

Voltage limit 𝑉𝑚𝑖𝑛 , 𝑉𝑚𝑎𝑥 0.95 p.u. ∼ 1.05 p.u. 

Apparent power limit  𝑆𝑚𝑎𝑥𝑆𝑚𝑎𝑥, 𝑆𝑠𝑠,𝑚𝑎𝑥 6.6MW 

Turn ratio limit of OLTC 𝛾𝑡𝑎𝑝,𝑚𝑖𝑛 , 𝛾𝑡𝑎𝑝,𝑚𝑎𝑥 0.95, 1.05 

Number of total taps of OLTC 𝛿𝑡𝑎𝑝,𝑚𝑎𝑥 10 

Leading power factor cos ( 𝜃𝑙𝑑) 0.95 

Lagging power factor cos ( 𝜃𝑙𝑎𝑔) 0.95 

Curtailment limit  𝛼
𝑐𝑢𝑟

 10% 

DR limit  𝛽𝑑𝑟,𝑚𝑖𝑛 , 𝛽𝑑𝑟,𝑚𝑎𝑥 10% 

SVC capacity 𝑄𝑠𝑣𝑐,𝑐𝑎𝑝 500kVar 

B. Load and DG Profile 

In this paper, the worst case of demand loads and DG 

outputs is used when determining the MHC of DGs. This 

corresponds to the maximum DG outputs at the minimum 

load levels. As shown in Fig. 3, the minimum load at 

each time is used from the yearly actual load data of 

Japan, which are published by the Tokyo Electric Power 

Company (TEPCO) [23]. The peak load level of the IEEE 

33-bus system is used. Also, the PV generation rate is 

calculated by using yearly actual solar radiation and 

temperature data collected in Tokyo [24] and the 

maximum PV output at each time is used as shown in Fig. 

4. The data is collected from January 1, 2014 to 

December 31, 2014.   

 
Figure 3. Daily load profile. 

 
Figure 4. Daily PV output profile. 

C. Results and Analysis 

In this simulation, the following three cases are 

considered: 

Case 1: Only two sites are available for PVs (bus 21 

and bus 24). 

Case 2: Only four sites are available for PVs (bus 5, 

bus 15, bus 27 and bus 30). 

Case 3: All seven sites are available for PVs (bus 5, 

bus 10, bus 15, bus 21, bus 24, bus 27 and bus 30). 

In addition, the following two cases are also considered.  

Case A: ANM schemes are not used (i.e., passive 

network management). 

Case B: All elements of ANM are used. 

Table III shows the MHC and compare three PV siting 

cases. 

As the number of buses to install PVs increases, it can 

be seen in Case A that the MHC increases. On the other 

hand, in Case B, the MHC is almost the same regardless 

of the number of PV installation buses.  
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TABLE III.  MHC COMPARISON BY EACH SCHEME 

 
Moreover, the DR, RPC and DG power factor control 

show that the gain of the MHC is greater as the number 

of buses PV installed increase. For these elements, 

reactive power can be adjusted. Therefore, as the number 

of PV installation buses increase, it can be considered 

that the reactive power control becomes more significant 

for a MHC increase. 

From Case1 to Case 3, the PV power Curtailment has 

the greatest gain of the MHC among each element. 

However, the gain does not change so much even if the 

number of PV installation buses increases. 

Also, the OLTC has the smallest contribution to the 

MHC increase in all cases. This is because it is located in 

the substation bus and only the voltage of the leaf node 

can be adjusted in the radial network, even if the network 

reconfiguration is considered. If the OLTC is set to other 

buses such as ones near PVs, it may be possible to induce 

greater MHC increase. 

When only the network reconfiguration is considered 

as ANM schemes, it is seen that the same MHC is 

achieved regardless of the number of installed PVs. In 

other words, as the number of PV buses gets smaller, the 

network reconfiguration affects the MHC increase, 

therefore, it is a very effective means to increase the 

MHC if the number of PV installed buses is small. 

V. CONCLUSIONS AND FUTURE WORKS 

This paper proposed the evaluation model for the 

MHC considering ANM schemes. The ANM schemes 

include coordinated voltage control of OLTC, RPC, DG 

curtailment, DG PFC, NR and DR. The original 

nonconvex model is converted to a MISOCP model by 

using linearization and second-order cone relaxation. 

Because of the convexity, the proposed model can 

guarantee convergence to optimality and can be solved 

efficiently with commercial solvers.  

The modified IEEE 33-bus test system was used to 

demonstrate the effectiveness and capability of the 

proposed model. When considering ANM schemes, the 

gain of the MHC is greater than 62% in all cases. In 

addition, from the obtained results, the effect of each 

ANM factor on the MHC increase was also analyzed.  

In this paper, the MHC was evaluated under the worst 

case without considering the uncertainty of demand and 

PV outputs. However, the possibility of occurrence of the 

worst case is very low. Therefore, we hope to evaluate 

the MHC considering the uncertainty in our future work. 
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