
About DSML Design Based on Standard and

Open-Source—REX from Safran Tech Work

Using Papyrus SysML

Maurice Theobald, Luca Palladino, and Pierre Virelizier
Safran/Safran Tech, Magny-Les-Hameaux, France.

Email: {maurice.theobald; luca.palladino; pierre.virelizier}@safrangroup.com

Abstract—With the increase in the level of integration and

complexity of new systems, it is mandatory to ensure system

architects collaborate closely with all the disciplines

involved in complex system design. Models enable such

fruitful collaboration. Similar to industrial product

development, research and technology activities require the

use of models to support processes and methods. This holds

true even if the development assurance level required is less

than that expected for an industrial program. In this context,

Safran decided to evaluate the Papyrus open-source SysML

modeler. During the first stage, the tool was deployed

straight out of the box (with a support to end users), but it

faced strong rejection. All associated issues have been

captured so as to specify a customization on top of Papyrus.

This customization is based on a SysML profile and is

tailored for our specific Safran processes and methods. This

required several steps before the end users fully agreed to

use this modeler. In this paper, we show how this was

implemented within Papyrus by demonstrating how a toy

example of a lightweight quadcopter drone is modeled.

Index Terms—Data models, domain-specific modeling

language, model-based-systems engineering

I. INTRODUCTION

Safran [1] defined a model-based system engineering

(MBSE) [2] framework compliant with the ARP4754A [3]

recommendations. A decision was made to use this

framework for research and technology projects by

reducing the constraints required for product

development. We started with an off-the-shelf version of

the Papyrus SysML [4], [5] modeler and provided some

recommendations to use it. However, this first

deployment was not a success, and the users quickly

dropped the modeler in favor of their Office tools.

One of the reasons why users lost interest in the

modeler was because the tool palette was too rich and

confusing despite the recommendations. For example,

from the palette of a block definition diagram one can

create several kinds of ports and there is no warning for

bad choices. Further, users could not foresee the

consequences of using one tool instead of another one. To

cope with this problem, we decided to reduce the palette

by keeping only the required tools for each of the

diagrams used in our framework.

Manuscript received October 25, 2017; revised March 27, 2018

This was the first step to support the transition, but it

was not sufficient enough to convince the users to drop

their legacy tool. The main reasons for this are that the

SysML semantics do not necessarily match the semantics

used in our processes and methods [6], [7]. Therefore, the

decision was made to develop a domain-specific

modeling language (DSML) [8]–[10] on top of the

Papyrus modeler to support the MBSE process and

method for our research and technology projects. The

process of requirements management is out of the scope

of this document. We will illustrate the process and the

use of the DSML by using the modeling of a lightweight

quadcopter drone as an example.

II. PROCESS AND DSML OVERVIEW

Our process is based on MBSE best practices [11]–
[13]. It was built upon three viewpoints [14] named
operational, functional, and physical.

The operational viewpoint defines WHY the system is
designed and specifies the relationships between the
system and its environment. It also describes the systems
external interfaces, its missions and uses, its lifecycle,
and the scenarios associated with the missions or use.

The functional viewpoint describes the functions
performed by the system to achieve its operational
missions. It focuses on the WHAT without regard to its
realization and describes the systems functional modes,
its functional decomposition, functional flow interactions,
and functional behavior.

The physical viewpoint describes HOW the system
implements the functions by specifying how its
components interact with one another.

This viewpoint provides the systems physical states,
physical decomposition, physical interactions, and
physical behavior.

The activities of the process were not performed in
waterfall, but by iteration.

The main purposes of the DSML are to:

 Provide customized diagrams that represent each

of the views of the framework (as shown in Fig. 1

and Fig. 2). A given view can be provided by

several diagrams depending on the complexity of

the view or its rationales.

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 7, No. 2, April 2018

©2018 Int. J. Elec. & Elecn. Eng. & Telcomm 70
doi: 10.18178/ijeetc.7.2.70-75

Figure 1. Customized SysML structure diagram.

Figure 2. Customized SysML behavior diagram.

 Provide semantics that match the process [15].

 Provide a default model packages organization.

 Provide rules to check the traceability within the

model.

 Provide custom graphical representation to replace

the default SysML box representation.

The user’s guide for this DSML is managed within the

modeler. It is a step-by-step guide to perform the task

required to design system architecture. It can interact with

the modeler to add items in the model.

III. QUADCOPTER OPERATIONAL VIEWPOINT

The design of the drone begins with the definition of

its operational architecture [12]. At this stage, the system

is considered as a black box. The first step is to identify

all the external systems that interact with it. What we

refer to as an external system is either a physical system

or a human. The view representing the elements has a

hierarchy grouped by category or family. For this purpose,

a customized use case diagram is used with a palette that

proposes: A stereotyped Unified Modeling Language

(UML) actor to represent an external system, a

specialization link to represent the hierarchical links, and

a comments label to document the view. Figure 3 shows

this palette.

Figure 3. The palette of the external systems architecture diagram.

Figure 4. An abstract of the quadcopter external systems diagram.

The users were relatively comfortable with this

approach, which only provides the required tools in the

palette and a rendering of their diagram similar to that

found in their legacy drawing tools. Each palette created

for the model follows the same approach. Fig. 4 shows an

abstract of the external system diagram of the quadcopter.

One of the targets of the operational architecture is to

identify the boundary of the system. This task is

performed using a system environment diagram, derived

from a SysML internal block diagram. This diagram

shows the interactions between the drone and the external

systems. Fig. 5 shows an abstract of the quadcopter

context diagram showing these interactions.

Figure 5. An abstract of the quadcopter context diagram.

Now, if we consider a timeline showing the system

operational contexts from its design to its disposal, we

can see that all the external systems are not involved in

all these contexts. The quadcopter operational contexts

are described in a lifecycle diagram derived from a state

machine diagram. This view shows the operational

contexts and the transitions between them. These

transitions depend on the external systems and their states.

Figure 6 shows an abstract of the drone lifecycle.

The interactions between the external systems and the

drone are defined by the use case diagrams and

operational scenario diagrams. The use cases are defined

by considering what an external system is expecting from

the drone within a given operational context.

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 7, No. 2, April 2018

©2018 Int. J. Elec. & Elecn. Eng. & Telcomm 71

Figure 6. An abstract of the quadcopter lifecycle.

Depending on the operational context, the external

systems in interaction with the quadcopter differ. In

addition, for a given operational context, a subset of the

external systems is involved; as a consequence, the use

cases also depend on the operational contexts. For

example, the operator cannot plan a delivery mission

when the quadcopter is in a maintenance context or the

technician cannot upgrade the software in a recycling

context.

The next step is to define the functions required by our

system to satisfy the use cases and the external system

needs. This is the objective of the functional viewpoint.

IV. QUADCOPTER FUNCTIONAL VIEWPOINT

The functional viewpoint is made up of four views

represented by the following diagrams:

 The system functional breakdown.

 The system functional mode.

 The system functional flow.

 The system functional behavior.

Unlike the operational viewpoint, from this point on,

the system is considered as a white box. The functional

breakdown structure presents a hierarchical view of the

functions performed by the drone. Figure 7 shows an

abstract of the functional decomposition diagram of the

quadcopter.

The palette of this diagram that is shown by Figure 8

provides two tools to create the hierarchical links

between the functions.

Figure 7. An abstract of the functional decomposition of the quadcopter.

Figure 8. The palette of the functional decomposition diagram.

Figure 9. The main functional modes of the quadcopter.

The composition tool was used to specify the

decomposition between the function and sub-functions,

while the shared tool specifies a transverse function used

in a functional structure. Transverse functions are

functions that can be used within multiple functional

structures. The shared tool and the other tools were added

during the evaluation of the DSML by the users.

For a given time frame, a subset of functions is active;

this subset can be empty. The span of time where a given

subset of functions is active is called a functional mode.

These functions are active until an event that activates a

new set of functions occurs. Also, there are dependencies

between the functional modes and the system lifecycle.

The modes and the transition between these modes are

represented in a functional mode diagram. Figure 9 shows

the main functional modes of the quadcopter.

For example, when the quadcopter is in stand-by mode

and the “flight planning request” event occurs, it switches

to the “flight planning mode.”

The internal structure of a function represents the

interactions and the flows exchanged between its sub-

functions. The DSML is using a SysML customized

internal block diagram to design the functions internal

structure.

The interactions between the quadcopter top-level

functions are also represented with an internal structure

diagram. Figure 10 shows the internal interactions of the

“move the drone in the air” function.

The scheduling and the control flow of the interactions

between the function are represented in a functional

behavior diagram. In our DSML, this diagram is a

specialization of an activity diagram. The palette of that

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 7, No. 2, April 2018

©2018 Int. J. Elec. & Elecn. Eng. & Telcomm 72

diagram has no tool to create functions; the functions are

dragged into the diagram from the functional breakdown

structure view. Behind the scene, a model transformation

is performed to get the function displayed in the diagram.

Fig. 11 shows this palette.

Figure 10. The internal structure of the function “move the drone in the
air.”

Figure 11. The palette on the functional behavior diagram.

Finally, the lowest level functions identified in the

functional viewpoint are allocated on the physical

architecture defined in the physical viewpoint.

V. QUADCOPTER PHYSICAL VIEWPOINT

The physical viewpoint describes the quadcopter

candidate physical architectures. This viewpoint is made

up of four views represented by the following diagrams:

 Physical breakdown structure.

 Physical interactions.

 Physical scenario.

 Physical configuration.

The physical breakdown structure describes the

hierarchy of the components in the quadcopter system.

Similar to the functional breakdown structure, this view is

represented by a customized SysML block definition

diagram. Figure 12 shows an abstract of the physical

decomposition of the quadcopter, which is represented at

the top of the hierarchy while all the components and

subcomponents are represented within the hierarchy.

Figure 12. An abstract of the physical decomposition of the quadcopter.

Figure 13. An abstract of the quadcopter physical configuration.

The interaction between the top-level components is

represented in a physical interaction diagram. For a given

physical breakdown structure, multiple physical

interaction diagrams can be candidates for a tradeoff.

The systems physical interactions identify the

interfaces between the components. The exchanges

through these interfaces are represented in a physical

scenario diagram. Unlike the operational scenario, the

physical scenario shows the exchanges beyond the

boundaries of the system. Thus, the interactions between

the components in the quadcopter with their dynamics are

described in the physical scenario view.

The components of the quadcopter that are active or

present in the system depend on its physical configuration.

For example, in the “physical configuration for storage,”

the system has no battery.

Figure 13 shows the physical configuration of the

drone. The operational, functional and physical

viewpoints are not partitioned into silos. There are

relationships between them.

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 7, No. 2, April 2018

©2018 Int. J. Elec. & Elecn. Eng. & Telcomm 73

VI. RELATIONSHIPS WITHIN THE MODEL

The advantage of using a modeler instead of a drawing

tool to design system architecture is the ability to manage

the consistency of the design. What is the impact if a use

case is changing? What is the impact if a new interface is

added or removed on a function? It is difficult to answer

these questions when a drawing tool is used but a

modeling tool can clearly show these impacts.

The DSML provides two ways to create relationships

between the items in a model: Traceability diagrams or

relationship matrixes. These relationships are built

according the data model shown in Figure 14.

In the DSML, a traceability diagram is a specialization

of the block definition diagram. Figure 1 shows the

palette of that diagram.

Figure 14. An abstract of the architecture framework traceability data
model.

Figure 15. The palette of the traceability diagram.

This palette contains all the relationships that are

created explicitly by the user.

The tool enables only the creation of relationships

consistent with the data model.

Figure 16 shows an abstract of the components

allocated to the battery loading configuration. The

relationships within this diagram can be also defined in

traceability matrixes.

Unlike a drawing tool, a modeling tool provides the

means to define rules to check the consistency of the

model according to the defined processes and methods.

We have implemented rules to check the compliance of

the model with our system architecture design methods.

These rules can go beyond the traceability aspect to

include for example naming conventions, number of

items allowed at a decomposition level or cross checking

the consistency of the relationships. The users can select

the rules they want to execute, depending on the stage of

the development. Two kinds of diagnostics are provided,

warnings and errors. The warnings are raised when a

design rule is not satisfied while the errors are raised

when an inconsistency is detected.

Figure 16. An abstract of the components allocated in the battery

loading configuration.

Figure 2. A diagram annotated by the model validation checker.

The rules violations are shown by a marker within the

diagrams. Figure 2 shows an example of a diagram with

the rules violation markers.

VII. CONCLUSIONS

MBSE is not yet widely deployed in the industry;

however, a transition is under way. To support this

transition, the user’s perceptions of modeling tools must

be changed. To do this, we tailored Papyrus to the user’s

needs.

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 7, No. 2, April 2018

©2018 Int. J. Elec. & Elecn. Eng. & Telcomm 74

System architects expect modeling tools to be as easy-

to-use as drawing tools. They want to be able to create

readable diagrams with graphical representations in order

to help them easily communicate with the domain experts.

Although a modeler will never be as easy to use as a

drawing tool, we demonstrated that it is worth the effort

required to switch to a system architecture modeler.

Our proposal addresses the largest roadblocks for

adopting a system architecture modeler. First, the

modeler helps to maintain the consistency of the system

architecture definition. Thus, it is easier to analyze the

impacts of a change over the whole architecture. We have

also embedded the documentation of the methods within

the tool avoiding the users from having to go back and

forth between a guide and the modeler. This last point

was very important to minimize the effort required for

user support. To get rid of the burden of writing the

documentation of the system architecture, it is now

generated automatically from the model and thus remains

consistent with the model.

The next step for this DSML in Papyrus is to introduce

the capability to simulate behavior models based on state

machines or activity diagrams using fUML [16].

Further plans include the capability to translate the

views of the system architecture into other languages

such as Simulink [17] or Modelica [18], [19]. This will

enable the digital continuity between the system

architecture activity and the discipline. The main benefit

of this is to guarantee the consistency between the system

layer and the discipline layer [20], [21].

REFERENCES

[1] Safran. Safran website. [Online]. Available: https://www.safran-

group.com/

[2] B. P. Douglass, “Chapter 1 - What Is Model-Based Systems
Engineering?” in Agile Systems Engineering, Boston: Morgan

Kaufmann, 2016, pp. 1–39.

[3] SAE ARP4754A, “Guidelines for Development of Civil Aircraft
and Systems,” SAE International, Rev. A Ed-2010.

[4] Papyrus. [Online]. Available: https://www.eclipse.org/papyrus/

[5] OMG SysML | OMG Systems Modeling Language. [Online].
Available: http://www.omgsysml.org/

[6] P. Patwari, S. R. Chaudhuri, A. Banerjee, S. Natarajan, and S.

Pandey, “A complementary domain specific design environment

aiding SysML,” presented at 2016 Int. Symp. on Systems

Engineering, 2016.

[7] N. Van, K. Gadeyne, and M. Witters, “Model-based systems
engineering of discrete production lines using SysML: An

experience report,” Procedia CIRP, vol. 60, pp. 157–162, 2017.

[8] S. Gérard, C. Dumoulin, P. Tessier, and B. Selic, “19 papyrus: A
UML2 tool for domain-specific language modeling,” in Model-

Based Engineering of Embedded Real-Time Systems, Springer,

Berlin, Heidelberg, 2010, pp. 361–368.
[9] F. Lagarde, F. Mallet, C. André, S. Gérard, and F. Terrier,

“Multilevel modeling paradigm in profile definition,” INRIA,

Research Report RR-6525, 2008.
[10] S. Hasan, A. Dubey, A. Chhokra, N. Mahadevan, G. Karsai, and X.

Koutsoukos, “A modeling framework to integrate exogenous tools
for identifying critical components in power systems,” presented

at the 2017 Workshop on Modeling and Simulation of Cyber-

Physical Energy Systems, 2017.
[11] S. Friedenthal, A. Moore, and R. Steiner, “Chapter 2 - model-

based systems engineering,” in A Practical Guide to SysML

(Second Edition), Boston: Morgan Kaufmann, 2012, pp. 15–27.

[12] A. Doufene, A. Dauron, H. G. C. G., and D. Krob, “Model-Based
operational analysis for complex systems - A case study for

electric vehicles,” in Proc. INCOSE Int. Symp., vol. 24, no. 1, pp.

122–138, Jul. 2014.
[13] M. W. Aziz and M. Rashid, “Domain specific modeling language

for cyber physical systems,” in Proc. Int. Conf. on Information

Systems Engineering, 2016, pp. 29–33.
[14] M. Mori, A. Ceccarelli, P. Lollini, B. Frömel, F. Brancati, and A.

Bondavalli, “Systems-of-systems modeling using a comprehensive

viewpoint-based SysML profile,” 2017.
[15] D. Ernadote, “Ontology-Based Pattern for System Engineering,”

in Proc. ACM/IEEE 20th Int. Conf. on Model Driven Engineering

Languages and Systems, 2017, pp. 248–258.
[16] I. Lazăr, S. Motogna, and B. Pârv, “Behaviour-Driven

development of foundational UML components,” Electron. Notes

Theor. Comput. Sci., vol. 264, no. 1, pp. 91–105, Aug. 2010.
[17] B. Chabibi, A. Douche, A. Anwar, and M. Nassar, “Integrating

SysML with simulation environments (Simulink) by model

transformation approach,” in Proc. 25th IEEE Int. Conf. on
Enabling Technologies: Infrastructure for Collaborative

Enterprises, 2016, pp. 148–150.

[18] P. Fritzson, Principles of Object-Oriented Modeling and
Simulation with Modelica 3.3: A Cyber-Physical Approach, 2

edition, Piscataway, New Jersey: Wiley-IEEE Press, 2014.

[19] A. Reichwein, et al., “Maintaining consistency between system
architecture and dynamic system models with SysML4Modelica,”

in Proc. 6th Int. Workshop on Multi-Paradigm Modeling, 2012, pp.

43–48.
[20] W. C. Bailey, J. Che, P. Tsou, and M. Jennings, “A framework for

automated model interface coordination using sysml,” presented at

the ASME Design Engineering Technical Conf., 2017.
[21] F. M. Johannes, A. Kellner, and L. Weingartner, “Integration of

domain-specific simulation models into descriptive system models

by using SysML,” presented at the 2017 IEEE Int. Symp. on
Systems Engineering, 2017.

Maurice Theobald received a
telecommunication engineer degree at the

University of Nice Sophia Antipolis (France).
From 1993 to 1999 he worked on research

projects on real-time video and audio

transport over wide area networks. For eight
years he held the position of system

engineering service manager at Dassault Data

Services. He is now working as a systems
enginering research engineer at Safran.

Luca Palladino (Dr.) is the complex system

engineering team leader since 2016. He

obtained a Ph.D. in control system engineering
of the University of Paris XI in 2006 and a

double engineering degree in electronic of

Supelec and Politecnico of Turin in 2003. He
started his carrier as system engineer in the

Thales Group working on avionics systems in

the aerospace industry. From 2008 to 2014, he
worked in the automotive industry for PSA

Peugeot Citroen first as system engineer and after as system architect on

thee-drive system for the hybrid vehicle project. He joined Safran in
2014 to work on the safety and the validation and verification aspect of

the Safran’s system engineering solution, from 2015 he is also the

system architect of the SHM project.

Pierre Virelizier is a system engineering expert in Safran since 2014.

He graduated from Ecole Centrale Paris in 1999 and has a master in
system architecture. From 2000 to 2010, he worked in Airbus group and

designed satellite control systems and aircraft flight control systems. He

joined Safran in 2010, as system architect for flight control electrical
actuation systems. Since 2015, he is conducting advanced research in

system engineering in the IRT Saint Exupery for Safran Group.

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 7, No. 2, April 2018

©2018 Int. J. Elec. & Elecn. Eng. & Telcomm 75

