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Abstract—With the increase in the level of integration and 

complexity of new systems, it is mandatory to ensure system 

architects collaborate closely with all the disciplines 

involved in complex system design. Models enable such 

fruitful collaboration. Similar to industrial product 

development, research and technology activities require the 

use of models to support processes and methods. This holds 

true even if the development assurance level required is less 

than that expected for an industrial program. In this context, 

Safran decided to evaluate the Papyrus open-source SysML 

modeler. During the first stage, the tool was deployed 

straight out of the box (with a support to end users), but it 

faced strong rejection. All associated issues have been 

captured so as to specify a customization on top of Papyrus. 

This customization is based on a SysML profile and is 

tailored for our specific Safran processes and methods. This 

required several steps before the end users fully agreed to 

use this modeler. In this paper, we show how this was 

implemented within Papyrus by demonstrating how a toy 

example of a lightweight quadcopter drone is modeled.  

Index Terms—Data models, domain-specific modeling 

language, model-based-systems engineering 

I. INTRODUCTION 

Safran [1] defined a model-based system engineering 

(MBSE) [2] framework compliant with the ARP4754A [3] 

recommendations. A decision was made to use this 

framework for research and technology projects by 

reducing the constraints required for product 

development. We started with an off-the-shelf version of 

the Papyrus SysML [4], [5] modeler and provided some 

recommendations to use it. However, this first 

deployment was not a success, and the users quickly 

dropped the modeler in favor of their Office tools. 

One of the reasons why users lost interest in the 

modeler was because the tool palette was too rich and 

confusing despite the recommendations. For example, 

from the palette of a block definition diagram one can 

create several kinds of ports and there is no warning for 

bad choices. Further, users could not foresee the 

consequences of using one tool instead of another one. To 

cope with this problem, we decided to reduce the palette 

by keeping only the required tools for each of the 

diagrams used in our framework. 
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This was the first step to support the transition, but it 

was not sufficient enough to convince the users to drop 

their legacy tool. The main reasons for this are that the 

SysML semantics do not necessarily match the semantics 

used in our processes and methods [6], [7]. Therefore, the 

decision was made to develop a domain-specific 

modeling language (DSML) [8]–[10] on top of the 

Papyrus modeler to support the MBSE process and 

method for our research and technology projects. The 

process of requirements management is out of the scope 

of this document. We will illustrate the process and the 

use of the DSML by using the modeling of a lightweight 

quadcopter drone as an example. 

II. PROCESS AND DSML OVERVIEW 

Our process is based on MBSE best practices [11]–
[13]. It was built upon three viewpoints [14] named 
operational, functional, and physical. 

The operational viewpoint defines WHY the system is 
designed and specifies the relationships between the 
system and its environment. It also describes the systems 
external interfaces, its missions and uses, its lifecycle, 
and the scenarios associated with the missions or use. 

The functional viewpoint describes the functions 
performed by the system to achieve its operational 
missions. It focuses on the WHAT without regard to its 
realization and describes the systems functional modes, 
its functional decomposition, functional flow interactions, 
and functional behavior. 

The physical viewpoint describes HOW the system 
implements the functions by specifying how its 
components interact with one another. 

This viewpoint provides the systems physical states, 
physical decomposition, physical interactions, and 
physical behavior. 

The activities of the process were not performed in 
waterfall, but by iteration. 

The main purposes of the DSML are to: 

 Provide customized diagrams that represent each 

of the views of the framework (as shown in Fig. 1 

and Fig. 2). A given view can be provided by 

several diagrams depending on the complexity of 

the view or its rationales. 
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Figure 1. Customized SysML structure diagram. 

 
Figure 2. Customized SysML behavior diagram. 

 Provide semantics that match the process [15]. 

 Provide a default model packages organization. 

 Provide rules to check the traceability within the 

model. 

 Provide custom graphical representation to replace 

the default SysML box representation. 

The user’s guide for this DSML is managed within the 

modeler. It is a step-by-step guide to perform the task 

required to design system architecture. It can interact with 

the modeler to add items in the model. 

III. QUADCOPTER OPERATIONAL VIEWPOINT 

The design of the drone begins with the definition of 

its operational architecture [12]. At this stage, the system 

is considered as a black box. The first step is to identify 

all the external systems that interact with it. What we 

refer to as an external system is either a physical system 

or a human. The view representing the elements has a 

hierarchy grouped by category or family. For this purpose, 

a customized use case diagram is used with a palette that 

proposes: A stereotyped Unified Modeling Language 

(UML) actor to represent an external system, a 

specialization link to represent the hierarchical links, and 

a comments label to document the view. Figure 3 shows 

this palette. 

 
Figure 3. The palette of the external systems architecture diagram. 

 

Figure 4. An abstract of the quadcopter external systems diagram. 

The users were relatively comfortable with this 

approach, which only provides the required tools in the 

palette and a rendering of their diagram similar to that 

found in their legacy drawing tools. Each palette created 

for the model follows the same approach. Fig. 4 shows an 

abstract of the external system diagram of the quadcopter. 

One of the targets of the operational architecture is to 

identify the boundary of the system. This task is 

performed using a system environment diagram, derived 

from a SysML internal block diagram. This diagram 

shows the interactions between the drone and the external 

systems. Fig. 5 shows an abstract of the quadcopter 

context diagram showing these interactions. 

 
Figure 5. An abstract of the quadcopter context diagram. 

Now, if we consider a timeline showing the system 

operational contexts from its design to its disposal, we 

can see that all the external systems are not involved in 

all these contexts. The quadcopter operational contexts 

are described in a lifecycle diagram derived from a state 

machine diagram. This view shows the operational 

contexts and the transitions between them. These 

transitions depend on the external systems and their states. 

Figure 6 shows an abstract of the drone lifecycle. 

The interactions between the external systems and the 

drone are defined by the use case diagrams and 

operational scenario diagrams. The use cases are defined 

by considering what an external system is expecting from 

the drone within a given operational context. 
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Figure 6. An abstract of the quadcopter lifecycle. 

Depending on the operational context, the external 

systems in interaction with the quadcopter differ. In 

addition, for a given operational context, a subset of the 

external systems is involved; as a consequence, the use 

cases also depend on the operational contexts. For 

example, the operator cannot plan a delivery mission 

when the quadcopter is in a maintenance context or the 

technician cannot upgrade the software in a recycling 

context. 

The next step is to define the functions required by our 

system to satisfy the use cases and the external system 

needs. This is the objective of the functional viewpoint. 

IV. QUADCOPTER FUNCTIONAL VIEWPOINT 

The functional viewpoint is made up of four views 

represented by the following diagrams: 

 The system functional breakdown. 

 The system functional mode. 

 The system functional flow. 

 The system functional behavior. 

Unlike the operational viewpoint, from this point on, 

the system is considered as a white box. The functional 

breakdown structure presents a hierarchical view of the 

functions performed by the drone. Figure 7 shows an 

abstract of the functional decomposition diagram of the 

quadcopter.  

The palette of this diagram that is shown by Figure 8 

provides two tools to create the hierarchical links 

between the functions. 

 
Figure 7. An abstract of the functional decomposition of the quadcopter. 

 
Figure 8. The palette of the functional decomposition diagram. 

 
Figure 9. The main functional modes of the quadcopter. 

The composition tool was used to specify the 

decomposition between the function and sub-functions, 

while the shared tool specifies a transverse function used 

in a functional structure. Transverse functions are 

functions that can be used within multiple functional 

structures. The shared tool and the other tools were added 

during the evaluation of the DSML by the users. 

For a given time frame, a subset of functions is active; 

this subset can be empty. The span of time where a given 

subset of functions is active is called a functional mode. 

These functions are active until an event that activates a 

new set of functions occurs. Also, there are dependencies 

between the functional modes and the system lifecycle. 

The modes and the transition between these modes are 

represented in a functional mode diagram. Figure 9 shows 

the main functional modes of the quadcopter. 

For example, when the quadcopter is in stand-by mode 

and the “flight planning request” event occurs, it switches 

to the “flight planning mode.” 

The internal structure of a function represents the 

interactions and the flows exchanged between its sub-

functions. The DSML is using a SysML customized 

internal block diagram to design the functions internal 

structure. 

The interactions between the quadcopter top-level 

functions are also represented with an internal structure 

diagram. Figure 10 shows the internal interactions of the 

“move the drone in the air” function. 

The scheduling and the control flow of the interactions 

between the function are represented in a functional 

behavior diagram. In our DSML, this diagram is a 

specialization of an activity diagram. The palette of that 
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diagram has no tool to create functions; the functions are 

dragged into the diagram from the functional breakdown 

structure view. Behind the scene, a model transformation 

is performed to get the function displayed in the diagram. 

Fig. 11 shows this palette. 

 

Figure 10. The internal structure of the function “move the drone in the 
air.” 

 

Figure 11. The palette on the functional behavior diagram. 

Finally, the lowest level functions identified in the 

functional viewpoint are allocated on the physical 

architecture defined in the physical viewpoint. 

V. QUADCOPTER PHYSICAL VIEWPOINT 

The physical viewpoint describes the quadcopter 

candidate physical architectures. This viewpoint is made 

up of four views represented by the following diagrams: 

 Physical breakdown structure. 

 Physical interactions. 

 Physical scenario. 

 Physical configuration. 

The physical breakdown structure describes the 

hierarchy of the components in the quadcopter system. 

Similar to the functional breakdown structure, this view is 

represented by a customized SysML block definition 

diagram. Figure 12 shows an abstract of the physical 

decomposition of the quadcopter, which is represented at 

the top of the hierarchy while all the components and 

subcomponents are represented within the hierarchy. 

 

Figure 12. An abstract of the physical decomposition of the quadcopter. 

 

Figure 13. An abstract of the quadcopter physical configuration. 

The interaction between the top-level components is 

represented in a physical interaction diagram. For a given 

physical breakdown structure, multiple physical 

interaction diagrams can be candidates for a tradeoff. 

The systems physical interactions identify the 

interfaces between the components. The exchanges 

through these interfaces are represented in a physical 

scenario diagram. Unlike the operational scenario, the 

physical scenario shows the exchanges beyond the 

boundaries of the system. Thus, the interactions between 

the components in the quadcopter with their dynamics are 

described in the physical scenario view. 

The components of the quadcopter that are active or 

present in the system depend on its physical configuration. 

For example, in the “physical configuration for storage,” 

the system has no battery. 

Figure 13 shows the physical configuration of the 

drone. The operational, functional and physical 

viewpoints are not partitioned into silos. There are 

relationships between them. 
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VI. RELATIONSHIPS WITHIN THE MODEL 

The advantage of using a modeler instead of a drawing 

tool to design system architecture is the ability to manage 

the consistency of the design. What is the impact if a use 

case is changing? What is the impact if a new interface is 

added or removed on a function? It is difficult to answer 

these questions when a drawing tool is used but a 

modeling tool can clearly show these impacts. 

The DSML provides two ways to create relationships 

between the items in a model: Traceability diagrams or 

relationship matrixes. These relationships are built 

according the data model shown in Figure 14. 

In the DSML, a traceability diagram is a specialization 

of the block definition diagram. Figure 1 shows the 

palette of that diagram. 

 

Figure 14. An abstract of the architecture framework traceability data 
model. 

 

Figure 15. The palette of the traceability diagram. 

This palette contains all the relationships that are 

created explicitly by the user. 

The tool enables only the creation of relationships 

consistent with the data model. 

Figure 16 shows an abstract of the components 

allocated to the battery loading configuration. The 

relationships within this diagram can be also defined in 

traceability matrixes. 

Unlike a drawing tool, a modeling tool provides the 

means to define rules to check the consistency of the 

model according to the defined processes and methods. 

We have implemented rules to check the compliance of 

the model with our system architecture design methods. 

These rules can go beyond the traceability aspect to 

include for example naming conventions, number of 

items allowed at a decomposition level or cross checking 

the consistency of the relationships. The users can select 

the rules they want to execute, depending on the stage of 

the development. Two kinds of diagnostics are provided, 

warnings and errors. The warnings are raised when a 

design rule is not satisfied while the errors are raised 

when an inconsistency is detected. 

 

Figure 16. An abstract of the components allocated in the battery 

loading configuration. 

 

Figure 2. A diagram annotated by the model validation checker. 

The rules violations are shown by a marker within the 

diagrams. Figure 2 shows an example of a diagram with 

the rules violation markers. 

VII. CONCLUSIONS 

MBSE is not yet widely deployed in the industry; 

however, a transition is under way. To support this 

transition, the user’s perceptions of modeling tools must 

be changed. To do this, we tailored Papyrus to the user’s 

needs. 
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System architects expect modeling tools to be as easy-

to-use as drawing tools. They want to be able to create 

readable diagrams with graphical representations in order 

to help them easily communicate with the domain experts. 

Although a modeler will never be as easy to use as a 

drawing tool, we demonstrated that it is worth the effort 

required to switch to a system architecture modeler. 

Our proposal addresses the largest roadblocks for 

adopting a system architecture modeler. First, the 

modeler helps to maintain the consistency of the system 

architecture definition. Thus, it is easier to analyze the 

impacts of a change over the whole architecture. We have 

also embedded the documentation of the methods within 

the tool avoiding the users from having to go back and 

forth between a guide and the modeler. This last point 

was very important to minimize the effort required for 

user support. To get rid of the burden of writing the 

documentation of the system architecture, it is now 

generated automatically from the model and thus remains 

consistent with the model. 

The next step for this DSML in Papyrus is to introduce 

the capability to simulate behavior models based on state 

machines or activity diagrams using fUML [16]. 

Further plans include the capability to translate the 

views of the system architecture into other languages 

such as Simulink [17] or Modelica [18], [19]. This will 

enable the digital continuity between the system 

architecture activity and the discipline. The main benefit 

of this is to guarantee the consistency between the system 

layer and the discipline layer [20], [21]. 
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