
Smart Grid Communication Infrastructure

Comparison–For Distributed Control of

Distributed Energy Resources Using Internet of

Things Devices

Bo Petersen, Henrik Bindner, Bjarne Poulsen, and Shi You
Technical University of Denmark, DTU Electrical Engineering & DTU Compute, Kgs. Lyngby, Denmark

Email: bo@petersen.dk, hwbi@elektro.dtu.dk, bjpo@dtu.dk, sy@elektro.dtu.dk

Abstract—Communication between distributed energy

resources and aggregators is necessary to improve the

efficiency of power use and solve stability issues. For the

communication, the probability of delivery for

measurements and control commands determines the

possible power system services. The probability of delivery

is determined by the processing units, data connection,

middleware, and serialization. The comparison is made

based on multiple experimental setups to test the

performance of different middleware and serialization with

different processing units and data connections in a Smart

Grid context. The hardware includes Beagle Bone,

Raspberry Pi, and Dell laptop processing units, and the data

connection bandwidths are 1, 10, 100, and 1000 Mbit/s. The

results show that there are better alternatives to the

Extensible Messaging and Presence Protocol (XMPP) and

Web Services middleware and XML serialization as

advocated for by the prevalent communication standards.

This paper gives guidance in choosing the best software and

hardware for communication depending on the use case.

Index Terms—smart grid, communication, infrastructure,

middleware, serialization

I. INTRODUCTION

Communication between distributed energy resources

(DERs) and aggregators is required to improve the

efficiency of power use in future smart grids and to

support more reliable and robust operations.

The need for these improvements comes from the

increase in intermittent renewable energy, primarily solar

and wind power, which is problematic with a traditional

load following power grid, thus requiring energy storage

and a production-following smart grid.

The power grid will be made production following by

DERs providing power system ancillary services, such as

primary frequency control for stability, and by moving

production and consumption, using services such as load

shifting and shedding.

Some of these ancillary services require a high

probability of delivery of measurements and control

Manuscript received August, 2017; revised December 14, 2017.

commands within a short timeframe, which is determined

by the processing units of the DERs, the data connection

between the DERs, the communication middleware, and

the serialization used for the communication.

The state-of-the-art by previous papers [1]-[3], and the

authors’ earlier work [4]-[6], is that they investigated the

performance and characteristics of middleware and

serialization for communication but did not investigate

the impact on performance by the processing units of the

DERs and the data connection between the DERs.

This paper aims to determine the combined

performance of middleware and serialization with

different processing units and data connections, to

determine the impact of the processing units and data

connections, and to determine the best combination of

processing units, data connection, middleware, and

serialization.

The authors’ earlier work covers the performance and

characteristics of middleware and serialization separately,

the combined performance, and also includes the

arguments for including these communication

middleware and serialization formats/libraries, which is

therefore not covered in this paper.

The hypothesis of the paper is that the probability of

delivery of measurements and control commands can be

improved by the choice of middleware, serialization,

processing unit, and data connection, especially

compared to the middleware and serialization

recommended by prevalent communication standards for

smart grids, including IEC 61850 [7], OpenADR [8], and

CIM [9].

II. METHOD

The tests were performed in Java using Oracle JDK

1.8.0_111 on ten setups which combine a pair of

processing units and a data connection.

The processing units included consist of a pair of the

following:

 Beagle Bone Black.

 Raspberry Pi 3 (model B).

 Dell Latitude E6520 laptop.

The data connections used by limiting the bandwidth

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 7, No. 1, January 2018

©2018 Int. J. Elec. & Elecn. Eng. & Telcomm. 7
doi: 10.18178/ijeetc.7.1.7-14

mailto:sy@elektro.dtu.dk

of the network from 1 Gbit/s using the Linux Traffic

Control subsystem are as follows:

 1 Mbit/s.

 10 Mbit/s.

 100 Mbit/s.

 1 Gbit/s (only for Dell laptops).

The Beagle Bone and Raspberry Pi are only capable of

100 Mbit/s, and the Dell laptop is capable of 1 Gbit/s;

therefore, the 1 Gbit/s data connection is only tested with

the Dell laptops.

For each combination of processing units and data

connections, the tests are performed with every

combination of 10 middleware and 25 serializers included

based on the earlier work of the authors’.

A message in this context means a set of measurements

or a control schedule (as described in IEC 61850-7-{4,

420})

The tests measure the number of messages received

(throughput) and the average time it takes to send a

message (latency) within a 10 s period:

 Throughput (messages per second).

 Latency (milliseconds per message).

The tests are performed using three messaging patterns:

Request–Reply for measurement polling, Push–Pull for

sending control commands, and Publish–Subscribe for

delivering measurements when they are made:

Each test is run 10 times on every combination of

processing unit and data connections with every

combination of middleware and serialization for every

messaging pattern, measuring throughput, and latency.

To measure the time a message is sent and received to

get the latency, the same clock is used, using the same

processing unit to measure both, which require the

measurements and control commands to be sent twice,

with the result being half the time between being sent and

received.

The data model used for measurements and control

commands is the IEC 61850 [7] data model (one logical

node per message, except the request message of

Request–Reply, which is an IEC 61850 path string).

III. RESULTS

A. Setup

With strong processing units like the Dell’s and a fast

data connection of 100+ Mbit/s, throughput speeds of

1000 messages per second can be reached (Fig. 1), with a

latency below 1 ms per message (Fig. 2).

Figure 1. Maximum average throughput by setup and pattern for all combinations of middleware and serialization.

Figure 2. Minimum average latency by setup and pattern for all combinations of middleware and serialization.

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 7, No. 1, January 2018

©2018 Int. J. Elec. & Elecn. Eng. & Telcomm. 8

To get throughput speeds of 280–510 messages per

second and a latency below 3 ms per message, adequate

processing units like the Raspberry Pi’s or Dell’s are

needed, along with a data connection of at least 10 Mbit/s.

Using less powerful processing units like the Beagle

Bone’s will result in throughput fewer than 140 messages

per second and a latency above 4 ms per message.

With a slow data connection of 1 Mbit/s, the

throughput is below 50 messages per second, and the

latency is above 13 ms per message.

The results show that a slow data connection of 1

Mbit/s limits the performance of all processing units, a

data connection of 10 Mbit/s allows the Raspberry Pi’s

and Dell’s to perform much better, and a fast data

connection of 100 Mbit/s requires strong processing units

like the Dell’s to be utilized fully. The 1 Gbit/s data

connection requires even stronger processing units than

the ones tested.

The results also show that the Dell’s need a 100 Mbit/s

data connection to perform optimally, the Raspberry Pi’s

need a 10 Mbit/s data connection, and the Beagle Bone’s

only need a data connection a little faster than 1 Mbit/s.

For the messaging patterns, the results show that, when

the data connection is fast, the Request–Reply pattern

performs better, and Push–Pull and Publish–Subscribe do

better when the processing units are stronger compared to

the data connection.

B. Middleware

Fig. 3 shows the throughput, and Fig. 4 shows the

latency of each middleware by each setup. They show

that, for the two strongest setups with the strongest

processing unit (Dell) and fast data connections (100+

Mbit/s), all middleware, except XMPP, Web Services,

and OPC UA, perform well on throughput with 600+

messages per second, and the same middleware, except

for XML-RPC and WAMP, also perform well on latency

with less than 2.1 ms per message.

For each middleware, Fig. 5 shows the average

utilization for all setups, with the maximum utilization

defined as the utilization of the fastest middleware on

each setup, for both throughput and latency.

When comparing the performance of communication

middleware across the setups with regard to throughput,

ICE, ZeroMQ, and WAMP perform the best with a

utilization above 70%, and Web Services, XMPP, and

OPC UA have a utilization below 31%.

Figure 3. Maximum average throughput by setup and middleware for all serialization and patterns.

Figure 4. Minimum average latency by setup and middleware for all serialization and patterns.

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 7, No. 1, January 2018

©2018 Int. J. Elec. & Elecn. Eng. & Telcomm. 9

Figure 5. Middleware throughput and latency utilization.

Figure 6. Middleware throughput utilization.

Figure 7. Middleware latency utilization.

On latency, ICE, ZeroMQ, RMI, and YAMI4 generally

do an excellent job, with utilization above 70%, and Web

Services, XMPP, and OPC UA have a utilization below

30%. To get the full picture of how the middleware

perform, Fig. 6 and Fig. 7 show the throughput and

latency utilization, respectively, for the middleware

across the setups. Although ICE performs the best and

OPC UA performs the worst in almost all cases for both

throughput and latency, the performance of the other

middleware is more fluctuating.

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 7, No. 1, January 2018

©2018 Int. J. Elec. & Elecn. Eng. & Telcomm. 10

Figure 8. Maximum average throughput by setup and serialization for all middleware and patterns.

Figure 9. Minimum average latency by setup and serialization for all middleware and patterns.

Figure 10. Serialization throughput and latency utilization.

The throughputs of ZeroMQ and WAMP differ a lot

depending on the setup, but are generally good, and

YAMI4 and RMI perform modestly on all setups.

Web Services and XMPP generally do not perform

well compared to the other middleware, but when the

processing units are very strong compared to the data

connection, they do better.

Although the latency for ZeroMQ, RMI, and YAMI4

is relatively stable, for WAMP it is very similar to that

for Web Services and XMPP, which is not as good.

C. Serialization

The throughput and latency for each type of

serialization are shown in Fig. 8 and Fig. 9, respectively,

for each setup.

ProtoStuff, ProtoBuf (ProtoStuff), Smile (ProtoStuff),

Fast-Serialization, Hessian, Smile (Jackson), and CBOR

(Jackson) reach throughputs of 870+ messages per

second, and except for Smile (Jackson) and CBOR

(Jackson), they achieve a latency fewer than 1.1 ms per

message on the two fastest setups (Dell 100+ Mbit/s).

Fig. 10 shows the average throughput and latency

utilization of all serialization for all setups, which shows

that only ProtoStuff and ProtoBuf (ProtoStuff) have

throughput and latency utilization above 90%, all XML

serializers are below 20%, all JSON serializers, except 1,

are faster than the XML serializers, and binary serializers

are faster than string serializers.

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 7, No. 1, January 2018

©2018 Int. J. Elec. & Elecn. Eng. & Telcomm. 11

Figure 11. Serialization throughput utilization.

Figure 12. Serialization latency utilization.

Fig. 11 and Fig. 12 show the relative performance of

the serializers for the setups on throughput and latency,

respectively.

It is quite interesting that Avro (Jackson) performs

really well on throughput and latency when the

processing unit is stronger than the data connection, as in

the case of the Dell 1 Mbit/s setup. This is because of the

small size of the messages generated by Avro.

IV. DISCUSSION

A. Communication Standards

The results show that XMPP and Web Services have

low throughput and high latency compared to the other

middleware, that JSON is a better alternative to XML,

and that binary serializers are even faster.

This means that, for distributed systems where the

XMPP and Web Services server needs to run on the

processing units of the DERs, there are better alternatives

to XMPP, Web Services, and XML.

As the prevalent communication standards currently

advocate for XMPP and Web Services middleware and

XML serialization, they should consider other, newer

middleware and serialization, limit their scope to

centralized systems or only use these middleware and this

serialization as the reference choice, and recommend

using other middleware and serialization.

B. Guidance

For the setups, the best combinations are Dell 100

Mbit/s, Raspberry Pi 10 Mbit/s, and Beagle Bone 1

Mbit/s, which makes the best use of the available

processing unit and data connection, and the choice

between them depends on the required performance.

The best performing middleware choices are ICE,

ZeroMQ, YAMI4, and WAMP.

ICE really does an excellent job on performance, but it

does not support Publish–Subscribe, which could hurt the

performance in real-world cases.

ZeroMQ and YAMI4 have varying throughput

performance, and WAMP has low latency performance.

For serialization, JSON generally performs better than

XML and binary performs even better, with the two best

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 7, No. 1, January 2018

©2018 Int. J. Elec. & Elecn. Eng. & Telcomm. 12

performing serializers being ProtoStuff and ProtoBuf

(ProtoStuff).

We should consider that the serializers that produce

compact output could have better performance with very

strong processing units, slow data connections, and long

distances between DERs because of the messages being

transmitted faster over the Internet. Avro (Jackson) and

MsgPack produce the most compact output.

C. Previous Results

Compared to the results of the authors’ previous work

on middleware, ZeroMQ, YAMI4, and ICE still have the

best performance, and the performance of WAMP over

the setups is better than when measured only on the

Raspberry Pi 100 Mbit/s setup used for the earlier work

for throughput, but worse for latency. The difference is

that, with multiple setups, the varying performance of

ZeroMQ, YAMI4, and WAMP can now be seen, and ICE

leads in performance with multiple setups.

For serialization, ProtoStuff and ProtoBuf (ProtoStuff)

still have a clear performance advantage with multiple

setups, and Smile (ProtoStuff) and Fast-Serialization still

have the 3
rd

 and 4
th
 best performance, with their varying

performance for the setups now clearly visible. The most

interesting result with multiple setups is that compact

serializers such as Avro (Jackson) and MsgPack have a

clear advantage when the processing units are much

stronger than the data connection.

The performance of the messaging patterns, which

previously showed Request–Reply doing worse than

Push–Pull and Publish–Subscribe, is now different

depending on the setup, with the choice still dependent on

the use case.

D. Economics

Without considering who will be paying for the

processing unit and data connection, the manufacturer,

owner, or aggregator, the economic implication for the

processing unit is a price up to 200$ at present, with a

Raspberry Pi Zero costing 5$, a Beagle Bone Black

costing 60$, a Raspberry Pi 3 costing 40$, and a Nvidia

Jetson TK1 costing 190$.

The implications of adding up to 200$ to the price of

the DER are probably small, as the price of most DERs is

at least 10.000$, whereas the implications of adding a

monthly subscription fee for the internet connection could

result in negative customer feedback, becoming costly

over time depending on the country and the data usage.

The idea of having a processing unit and data

connection is that the owner earns money by providing

flexibility and ancillary services either directly to the

System Operators or through an aggregator.

Then, the question becomes how much more money

can be earned depending on the services that can be

provided, which depends on the processing unit and data

connection.

It should be considered that using compact

serialization with a strong processing unit could improve

the performance with low bandwidth data connections,

which might save money over the lifetime of the DER,

especially in countries with expensive data connections.

V. CONCLUSIONS

The results show that there are better alternatives to

using XMPP and Web Services for middleware and XML

for serialization as advocated for by the prevalent

communication standards.

ICE, ZeroMQ, YAMI4, and WAMP are good choices

for middleware, with ICE providing the best performance.

The characteristics of the middleware should, however,

also be taken into consideration.

For serialization, JSON performs better than XML, and

binary serializers perform even better, with the obvious

tradeoff of not being human-readable. The serializers

with the best performance by far are ProtoStuff and

ProtoBuf (ProtoStuff).

Comparison of setups shows that there is a clear

correlation with stronger processing units and faster data

connections providing better performance, but only when

the data connection fits with the processing unit in

performance, which means that the best combinations are

Beagle Bone 1 Mbit/s, Raspberry Pi 10 Mbit/s, and Dell

100 Mbit/s, except when using a compact serializer,

which requires a stronger processing unit compared to the

data connection.

The results show the performance provided depending

on the processing unit and data connection, and when this

is linked to the required performance for the services

required by the power grid, a cost–benefit analysis could

show the return on investment for processing units and

data connections.

The correlation between the processing unit and data

connection on performance can be used to avoid spending

money on strong processing units or data connections

without getting a clear benefit on performance.

The results show that a throughput of 1000 message

per second and a latency less than 1 ms per message can

be achieved with strong processing units and a fast data

connection, which should give an idea of which services

can be provided by the DERs.

Future work should be done on the impact on the

performance of sending measurements and control

commands over the internet, by comparing the distance to

the impact on throughput and latency.

ACKNOWLEDGMENT

Sponsored by the project, PROActive INtegration of

sustainable energy resources enabling active distribution

networks (PROAIN)

REFERENCES

[1] M. Albano, L. L. Ferreira, L. M. Pinho and A. R. Alkhawaja,
“Message-oriented middleware for smart grids,” Computer

Standards & Interfaces, vol. 38, pp. 133-143, 2015.

[2] L. Qilin and Z. Mintian, “The state of the art in middleware,”
Information Technology and Applications (IFITA), vol. 1, pp. 83-

85, 2010.
[3] A. Dworak, M. Sobczak, F. Ehm, W. Sliwinski, and P. Charrue,

“Middleware trends and market leaders 2011,” in Proc.

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 7, No. 1, January 2018

©2018 Int. J. Elec. & Elecn. Eng. & Telcomm. 13

International Conference on Accelerator and Large Experimental
Physics Control Systems, vol. 111010, 2011.

[4] B. Petersen, H. Bindner, S. You, and B. Poulsen, “Smart grid

serialization comparison,” in Proc. Science and Information
Organization (SAI) Computing Conference, London, 2017, in

press.
[5] B. Petersen, H. Bindner, S. You, and B. Poulsen, “Smart grid

communication middleware comparison,” in Proc. International

Conference on Smart Cities and Green ICT Systems
(SmartGreens), Porto, 2017, in press.

[6] B. Petersen, H. Bindner, S. You, and B. Poulsen, “Smart grid
communication comparison,” in Proc. International Conference

on Innovative Smart Grid Technologies, Torino, 2017, in press.

[7] R. E. Mackiewicz, “Overview of IEC 61850 and benefits,” in
Proc. Power Systems Conference and Exposition, Atlanta, 2006,

pp. 623-630.
[8] C. McParland, “OpenADR open source toolkit: Developing open

source software for the smart grid,” in Proc. Power and Energy

Society General Meeting, San Diego, 2011, pp. 1-7.
[9] M. Uslar, S. Rohjans, M. Specht, and J. M. G. Vázquez, “What is

the CIM Lacking?” in Proc. Innovative Smart Grid Technologies
Conference Europe (ISGT Europe), Gothenburg, 2010, pp. 1-8.

Bo Petersen is currently with the Center for
Electric Power and Energy at the Technical

University of Denmark as a Ph.D. student. He

received his B.Sc. and M.Sc. degree in
software engineering from the Technical

University of Denmark. His research interests
cover software architecture for the integration

of renewable energy and management of

distributed energy resources in the Smart Grid.

Henrik W. Bindner is a senior scientist and
the head of the Energy System Operation and

Management Research Group in the Center

for Electric Power and Energy (CEE) at the
Technical University of Denmark (DTU).

He received his M.Sc. degree in electrical
engineering from the Technical University of

Denmark, Lyngby, Denmark, in 1988. Since

1990, he has been with the Risø National
Laboratory for Sustainable Energy, Roskilde,

Denmark. He has been focusing on developing technologies and control
schemes enabling DER units to participate in the control of the power

system. One of his main activities has been participation in establishing

the experimental facility SYSLAB.

Bjarne Poulsen received his M.Sc. from
Aalborg University and Ph.D. from the

Technical University of Denmark. He has

many years of industrial experience and has
worked as an associate professor at the

Technical University of Denmark since 2001.
His research interests is within industrial

distributed IT systems, with focus on the

energy sector. He worked on the
implementation of the IEC 61400-25 standard,

and participated in the research projects Virtual Power Plant and
EDISON.

Shi You received his M.Sc. and Ph.D. in
electrical engineering from Chalmers Institute

of Technology, Sweden in 2007 and DTU
(Technical University of Denmark) in 2010

respectively. Currently, he is a research

scientist at the Center for Electric Power and
Energy, Department of Electrical Engineering

at DTU. His main research interests include
market-based control, management and

integration of distributed energy resources,

planning, operation and management of active distribution networks and
integrated energy systems.

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 7, No. 1, January 2018

©2018 Int. J. Elec. & Elecn. Eng. & Telcomm. 14

