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Abstract—This paper presents the SARSNet architecture, 

developed to address the growing challenges in Synthetic 

Aperture Radar (SAR) deep learning-based automatic water 

body extraction. Such a task is riddled with significant 

challenges, encompassing issues like cloud interference, 

scarcity of annotated dataset, and the intricacies associated 

with varied topography. Recent strides in Convolutional 

Neural Networks (CNNs) and multispectral segmentation 

techniques offer a promising avenue to address these 

predicaments. In our research, we propose a series of 

solutions to elevate the process of water body segmentation. 

Our proposed solutions span several domains, including 

image resolution enhancement, refined extraction techniques 

tailored for narrow water bodies, self-balancing of the class 

pixel level, and minority class-influenced loss function, all 

aimed at amplifying prediction precision and streamlining 

computational complexity inherent in deep neural networks.  

The framework of our approach includes the introduction of 

a multichannel Data-Fusion Register, the incorporation of a 

CNN-based Patch Adaptive Network augmentation method, 

and the integration of class pixel level balancing and the 

Tversky loss function. We evaluated the performance of the 

model using the Sentinel-1 SAR electromagnetic signal 

dataset from the Earth flood water body extraction 

competition organized by the artificial intelligence 

department of Microsoft. In our analysis, our suggested 

SARSNet was compared to well-known semantic 

segmentation models, and a comprehensive assessment 

demonstrates that SARSNet consistently outperforms these 

models in all data subsets, including training, validation, and 

testing sets.  

Index Terms—Satellite monitoring, segmentation, 

convolutional neural networks, multispectral images, 

Synthetic Aperture Radar (SAR) microwave signals, class 

balancing 

I. INTRODUCTION 

Water body segmentation is essential in monitoring the 
behavior of the water levels in the respective ecosystems 
[1] and to manage their sources [2]. The anomalous 
increase and decrease in water levels in various 

geographical places around the world have recorded a 
gruesome number of natural disasters. However, it is 
imperative to detect and monitor water in our environment 
so that warnings before disasters are in time for prompt 

actions. Generally, automatic extraction of water bodies in 

certain locations with complex surfaces rough edges, and 

type of water, such as rough water body, can be a 
challenging task [1]. Remote sensing and deep learning 
have emerged as lieutenants in the automatic extraction of 
water bodies. For continuous monitoring, cloud cover 

mostly affects optical data due to seasonality [3]. SAR 
images whose satellites can transmit and receive signals 
day or night, with a short revisit time around the globe, 
regardless of weather conditions [4] are widely applied in 

water body segmentation tasks. 

Over the years, numerous scholars with an interest in 

water body segmentation have conducted several research 

using various methods including Normalized Difference 

Water Indices (NDWI) [5] and NDWI unsupervised deep 

learning approaches [6]. Most recently, researchers 

conducted a review of deep learning architectures for 

water body extraction and provide valuable information on 

the effectiveness of various deep learning architectures [7]. 

It follows that, with deep learning principles, researchers 

have made tremendous progress in producing lightweight 

[8] and high-precision models [9]. 

It is evident that prior deep learning models suffer from 

either of the following pressing issues, narrow waterbodies, 

class imbalance, and insufficient labeled data. To achieve 

excellent performance, researchers must treat such 

inherent problems with maximum attention. For efficient 

extraction of narrow water bodies, a new deep learning-

based method that utilizes image reconstruction techniques 

to enhance narrow water body segmentation was proposed 

[10]. Other researchers employed an enhanced Unet to 

detect narrow water bodies [11]. A recent deep learning 

approach that uses Sentinel-1 SAR imagery by combining 

input maps from various scales to increase the accuracy of 

narrow water body detection was proposed. However, the 

model did well in narrow water body segmentation, but it 

demands a high number of parameters, creating high 

computational requirements, with costly GPU usage 

during training [12]. Class imbalance is also among the 

challenges that usually reduce the robustness of deep-

learning models to accurately detect waterbodies. It has the 

potential to make a deep learning model underperform [13]. 

Numerous techniques, including the use of class re-scaling 

[14], similarity loss functions [15], and distribution 

alignment [13], have been proposed, but most have proven 

to be unreliable or computationally expensive [12]. 

Another nerve-wracking challenge is insufficient data. 

Deep learning models often require adequate data, which 

will enable the model to easily understand the related task 
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[16]. To solve this, transfer learning [17] and 

Albumentations augmentation approaches have been used. 

Geometric transformations, random erasing, mixing 

images, color space augmentations, and others, are all 

popular augmentation methods [18], though some of them 

possibly will introduce unwanted noise while some might 

alter data labels [19]. 

Finally, other issues that often disrupt the efficiency of 

our deep learning models when used with SAR Dataset 

include speckle noise, image resolution, and shadow 

waters. With SAR data, water body detection, and 

monitoring is reliable and continuous [4] if not for the 

inherent speckle noise and shadow water effects caused by 

SAR signal backscatter and tall buildings or trees 

respectively [8]. This speckle noise aka salt and pepper 

noise can significantly degrade the quality of the image 

[20]. Shadow water on the other hand also contributes to 

misleading the model during training [21]. 

To address these problems, we employed deep learning 

techniques to reconstruct input images into smaller patches. 

Reconstruction of images into patches is one of the most 

efficient and reliable data augmentation mechanisms [14]. 

Hence one of the key features added to our model for data 

increment and the detection of narrow waterbodies is the 

Patch Adaptive Network (PAN) inspired by the Kernel 

filter of the CNN architecture [22]. For the inherent class 

imbalance in deep learning, we employed the Class Pixel-

level Balancing (CPB) to our PAN and the Tversky loss 

function [23]. To overcome SAR challenges, we enhance 

our model right from the preprocessing stage by 

introducing the SAR polarities (Vertical-Vertical (VV), 

Vertical-Horizontal (VH)), Fusion Register (FR) inspired 

by the “Dense-Coordinate-Feature Concatenate Network” 

[24]. The Digital Elevation Model (DEM) data 

recommended by [25] is also added to the FR in effect to 

suppress the disturbances of shadow waters. According to 

studies, fusing identical polarities (VV, Horizontal- 

Horizontal (HH)) is efficient for detecting rough surface 

waterbodies while the fusion of cross polarities 

(Horizontal-Vertical (HV), Vertical- Horizontal (VH)) is 

suitable on steady waters [26]. Therefore, the ground 

interference that affects the single polarization SAR can be 

suppressed by fusing different SAR image polarities, and 

by extension, this method also improves the structural 

characteristics of the feature map [27]. Also, based on the 

current challenges in SAR for automatic detection and 

monitoring of water, it seems that the long standing Unet 

[28] structure is no longer effective in solving current 

segmentation problems [9]. Therefore, the Unet [28] 

architecture with four down-scaling and four up-scaling 

layers has been modified to five layers on both sides with 

additional preprocessing features and adaptive data 

augmentations. The main contributions of this study are as 

follows. 

1) We proposed a novel framework for a water-body   

segmentation technique that integrates the FR to 

improve the structural characteristics of the input 

feature map. We also added a CPB to readjust the 

water and non-water pixel proportions to the PAN. 

2) We proposed an advanced Unet architecture that 

consists of five downblocks and five upblocks, 

making it robust enough to handle complex 

segmentation tasks. 

3) We set up different experiments purposely to rate the 

performance between the BCE Jaccard loss and the 

Tversky loss [23] on the class imbalance issue. 

4) Our experimental setup achieved the highest score 

compared to other state-of-the-art models. 

The remaining part of this paper is organized as follows. 

Section II narrates the training process, the PAN 

augmentation, the loss function, and the model architecture. 

The entire experiment is explained in Section III. Finally, 

the related Discussion and Future Work is explained in 

Section IV and the Conclusion is summarized in Section 

V. 

II. METHODOLOGY 

In our research, we analyzed well-known state-of-the-

art models and their own flaws. To overcome those flaws, 

we proposed the SARSNet model, which includes the FR, 

the PAN with its CPB, and the Tversky loss function [23]. 

In the FR, we merge the three individual channel inputs, 

denoted as VV, VH, and Digital Elevation Model (DEM). 

This advanced fusion technique enhances the performance 

of the model under challenging environmental conditions, 

for various applications related to the segmentation of the 

water bodies [27]. After improving the structural 

characteristics of the input map, we apply normalization to 

the Feature Fusion process. To achieve a balanced 

distribution of classes within the data, we transform the 

random values of pixels in the data labels into background 

values. Then the PAN augmentation technique uses the 

pixel-wise convolution of the kernel filter to augment our 

training data and improve the water pixel representation. 

The qualified data enters the training loop, and all 

parameters are fully updated via back-propagation while 

the Tversky loss [23] is employed to calculate the loss. 

After several epochs, the segmented maps are predicted for 

qualitative analysis while the Metrics are computed for 

further analysis. The training workflow is depicted in Fig.1. 

In deep learning, a low percentage of water pixels in 

images for water body segmentation is predominant and 

critical [29]. Recently, Gautam and Singhai [7] have 

utilized false color processing and a generative adversarial 

network (GAN) [18] to reconstruct images and enhance 

the features of narrow water bodies. With this inspiration, 

our PAN employs CNN pixel-wise movement of the 

Kernel filter to cut our 512×512 input images into smaller 

patches of size 256×256. Guided by the convolutional 

arithmetic for deep learning [28], the convolutional layer’s 

output can be influenced by a variety of parameters, 

including the size of the kernel (k), the padding value (p), 

the input size (x) and the step size of the kernel filter called 

strides (s). 

In a square image, the convolutional output when the 

kernel slides vertically (V) over the image is also the same 

as when it slides horizontally (H) using the same 

parameters. For any given values of k, x, s, and p, both 

vertical or horizontal convolution over the image is 

defined as    



 
Fig. 1. Transfer Fusion data and Mask into the Training Loop according to the experimental configuration, employing a blend of FR and PAN 

augmentation modules. The loss function is computed utilizing the Tversky loss [23]. 

𝐻 or 𝑉 = (
𝑥+2𝑝−𝑘

𝑠
) + 1                (1) 

 

Hence the total number of small images extracted from 

a single image is represented as N in (2): 

𝑁 = 𝑉𝐻                                 (2) 

From Eqs. (1) and (2), our PAN augmentation can 

extract multiple smaller image patches from every single 

input image without distorting their fine features. This 

implies that our 434 training samples can be automatically 

augmented to a thousand patches. However, with these 

anticipated figures, there is a high probability of class 

imbalance considering the nature of our dataset. As 

mentioned earlier, the percentage of water pixels is not 

evenly distributed in all the images and there are plenty of 

images with just a few or negligible pixels of water. 

Therefore, we introduce the CPB technique to the PAN 

augmentation approach by modifying Eq. (2) as shown in 

Eq. (3): 

𝑁 = 𝑉𝐻 − α                               (3) 

The modified equation sets α to 0.20 as a threshold 

value to perform automatic augmentation and then applies 

water CPB, which truncates patches with water pixels 

below the threshold. Overall, this approach increases our 

training inputs and adjusts the water and background 

proportions for a better pixel distribution. 

A. Proposed Architecture 

Our model presents an efficient SAR image 

segmentation model, referred to as SARSNet, designed to 

each downblock consisting of ReLU activation, dropout, 

and double 3×3 convolutional layers. A 2×2 max pooling 

layer downsampled the data, akin to downblocking1. 

Conversely, upblock 1mirrors downblock1, with SoftMax 

activation and a 2×2 convolutional layer with zero padding. 

Skip connections link each downblock to its corresponding 

upblock. Kernel quantities double from downblock 1 to 

downblock 3, while downblocks 4 and 5 reduce the second 

convolutional layer kernels by 25% and 50% compared to 

downblock 3. The SARSNet middle block involves a 

double 3×3 convolutional network, a ReLU activation, a 

dropout, and a 2×2 convolutional transposition with 

consistent padding. A skip connection is included for 

information flow. Table I gives a comprehensive summary 

of the proposed architecture. 

TABLE I: SUMMARY OF THE PROPOSED SARSNET ARCHITECTURE  

Layers Conv2D1 Conv2D2 Pooling 
Non-

Linearities 

FR & APN 256, 256, 3 - - - 

Downblock1 256, 256, 16 256, 256, 16 Same ReLU 
Downblock2 128, 128, 32 128, 128, 32 Same ReLU 

Downblock3 64, 64, 64 64, 64, 64 Same ReLU 

Downblock4 32, 32, 128 32, 32, 128 Same ReLU 
Downblock5 16, 16, 256 16, 16, 256 Same ReLU 

middleblock (8, 8, 512) (8, 8, 512) - ReLU 

Upblock5 16, 16, 256 16, 16, 256 Same ReLU 
Upblock4 32, 32, 128 32, 32, 128 Same ReLU 

Upblock3 64, 64, 64 64, 64, 64 Same ReLU 

Upblock2 128, 128, 32 128, 128, 32 Same ReLU 
Upblock1 256, 256, 16 256, 256, 16 Same ReLU 

Conv2D 256, 256, 2 - - Softmax 

B. Loss Function 

Since water is drastically underrepresented in our 

employed dataset, we added the Tversky loss function [23], 

which is known to influence models over the delicate 

imbalance between false negative predictions and false 

positive predictions [23]. It encourages the model to pay 

more attention to the minority water class than the non-

water class. Consider true positive (TP), false negative 

(FN), and false positive in image segmentation, while 

setting α > 0.5 emphasizes false negatives more while 

downplaying the role of false positive in (4): 



Tversky=1-
TP

TP+𝛼×FN+(1−𝛼)×FP
              (4) 

 

C. Evaluation Metrics 

Irrespective of a pixel’s assigned category, our primary 

concern typically revolves around determining the 

accuracy of pixel classification. Since the water pixels are 

in the minority, MIoU becomes the perfect metric for our 

task. Therefore, MIoU and various other metrics are 

expressed below, where xi is the label and yi is the expected 

outcome.   

Recall=
TP

FP+TN
                                   (5) 

Precision=
TP

FP+TP
                              (6) 

F-1=2
Precision × Recall

Precision + Recall
                         (7) 

MIoU =
TP

FN+TP+FP
                              (8) 

Dice Coefficient(𝑥𝑖 , 𝑦𝑖) =
2∗|𝑥𝑖∩𝑦𝑖|+1

𝑥𝑖+𝑦𝑖+1
        (9) 

III. EXPERIMENT 

A. Data Domain Description 

To evaluate the efficiency of our proposed model, we 

chose the Sentinel-1 dataset provided by the Artificial 

Intelligence department of Microsoft [25]. They selected 

several SAR (VV, VH) suites of water body scenes from 

13 different countries stored as high-resolution GeoTIFF 

image files with 512×512 pixels value. The 542 (VV, VH) 

SAR image suites with their corresponding labels were 

collected under different types of climates and 

geographical conditions. Radar satellites offer a diverse 

array of invaluable features for Earth observation. These 

include their exceptional all-weather capability, and the 

ability to capture high-quality imagery both day and night. 
In addition, Microsoft AI also recommends the 

inclusion of NASA’s supplementary elevation data 

(NASADEM) which also ensures the resilience and 

generality of our model. However, we observed from the 

data source [25] that the dataset employed in this research 

is entangled with several challenges such as label errors, 

zero water pixels on some images, and fewer available 

valid images. In the analysis of water body segmentation, 

the water Pixel-wise distribution across the Dataset is 

always paramount. In our case, the background pixels have 

occupied a gruesome portion leaving the water pixel with 

only a small portion. 

Due to the nature of these images, data augmentation is 

absolutely necessary. Hence the introduction of the PAN 

for image augmentation with (CPB) for re-scaling the 

proportion of water and non-water image patches. 

Consider (1) and (2), substitute 64 as stride (s), 256 for 

kernel filter (k), 0 for padding (p) on both sides of the 

image, and our input (x) is 512, our PAN approach was 

able to extract 25 image patches from every image and 

overall, up to 10.8k patches were generated. Equation (3) 

was then activated to qualify only patches with the 

required water pixels to enter the training loop. Table II 

above shows the performance of our augmentation 

approach. 

TABLE II: ANALYSIS OF IMAGE PATCHES BEFORE AND AFTER PAN 

TOGETHER WITH CPB 

Analysis  
Total 

(100%) 

Patches 

(80%)  

Train 

(10%) 

Test 

(10%) 

Before PAN  542  434 54 54 

After PAN + CPB  3025 2359 333 333 

 
In the analysis of water body segmentation, the water 

Pixel-wise distribution across the dataset is always 

paramount. In our case, the background pixels have 

occupied a gruesome portion leaving the water pixel with 

only a small portion. Fig. 2 shows updates on the 

distribution of pixels in the test, train, and validation 

dataset. 

 
Fig. 2. Pixel distribution of water and background for training, 

validation, and test dataset.  

B. Experimental Setup 

The dataset was partitioned into separate subsets, 

comprising 10% for validation, 80% for training, and 

another 10% for testing purposes. During model 

development, a validation sample was created as a subclass 

of the training data, allowing us to fine-tune 

hyperparameters and evaluate the model’s performance 

effectively. All experiments were conducted using the 

Tensor Flow framework and were executed on a NVidia 

GeForce RTX 2080 GPU. The training duration for each 

model typically ranged from 5 to 9 h, depending on factors 

such as architecture and batch size. Every model was 

trained using the whole training dataset for a maximum of 

175 epochs, or until we saw no improvement in validation 

loss for a continuous period of 10 epochs. To determine 

proficiency and robustness we compare SARSNet against 

various other segmentation models, including Unet [28], 

DNCNN [3], U2NET [30], Unet++ [29], Attunet [31], 

FPN [32], LINKNET [33], and VNET [34]. To avoid bias, 

all experimental procedures use the same parameter values, 

data preparation methods, and configurations. During 

these experiments, we also alternated the BCE Jaccard loss 

recommended by Microsoft AI with that of our suggested 

Tversky loss function [23]. As anticipated, SARSNet with 

the Tversky loss function [23] consistently outperforms 

these models in our quantitative and qualitative analyses. 

Eventually, even the models of the top three winners of the 



Microsoft Al competition [25] are dominated by our 

approach as shown in Fig. 3. 

 
Fig. 3. Evaluation of MIOU scores for the top three contenders in the 

Microsoft AI competition with our proposed SARSNet. 

 
Fig. 4. Evaluating models performances using the MIoU score on the 

training, validation, and test datasets. 

C. Quantitative analysis 

In Section II C above, we listed five metrics and since 

our task has a very high interest in the minority class, we 

used the MIoU for evaluation. This score serves as a 

comprehensive reflection of our model’s performance 

following the whole training process. Fig. 4 shows the 

MIoU score curves on all the models. The curves 

illustrated that Unet3PP [35], KVNET [34], and U2NET 

[30] perform poorly on the test data while our proposed 

model shows the best performance followed by Unet [28] 

and FPN [32].  

Nevertheless, for the sake of reference, we also provide 

scores of Recalls, Precision, Dice Coefficient, and F-1.  

Table III presents a statistical evaluation of various 

models using identical parameters. Significantly, our 

SARSNet excels by achieving the highest MeanIoU scores: 

0.89 in testing, 0.90 in validation, and 0.93 in training.  

In water body detection and monitoring, one of the 

inherent challenges is dealing with data imbalance, which 

can hinder efficiency. To reduce its effect, the dataset 

providers, Microsoft AI for Earth STAC API, recommend 

using the BCE Jaccard loss function. However, in our 

investigations, we have found that the Tversky loss 

function [23] offers a better solution for addressing data 

imbalance. Table IV presents a summary of our results. We 

conducted training sessions for 175 epochs for each loss 

function and documented their performance on the test set, 

focusing on metrics such as MIoU, precision, and F-1 

score. However, it is evident that the Tversky loss function 

[23] consistently outperforms the BCE Jaccard loss in all 

experiments. These findings informed our decision to 

exclusively employ the Tversky loss function in all our 

experiments. 

TABLE III: SARSNET EXPERIMENTAL RESULTS, DERIVED FROM THE DATASET [25], COLLECTED FOLLOWING 175 EPOCHS WITH AN ERROR RATE OF 

±2.50% 

Model 
Tversky Losss MIoU Dice Coff F-1 score Precision Recall 

Train  Val Test Train  Val Test Train  Val Test Train  Val Test Train  Val Test Train  Val Test 

AD_NET 0.37 0.33 0.07 0.74 0.75 0.85 0.63 0.67 0.93 0.61 0.58 0.79 0.61 0.61 0.82 0.61 0.68 0.88 

DNCNN 0.21 0.08 0.07 0.83 0.84 0.84 0.79 0.92 0.92 0.77 0.8 0.79 0.78 0.83 0.82 0.77 0.87 0.88 

ATTUNET 0.46 0.43 0.08 0.76 0.77 0.84 0.54 0.57 0.93 0.53 0.5 0.79 0.53 0.53 0.82 0.54 0.59 0.87 

UNET3PP 0.5 0.49 0.35 0.28 0.33 0.4 0.5 0.51 0.64 0.49 0.45 0.47 0.5 0.5 0.53 0.5 0.54 0.6 

KVNET 0.5 0.5 0.08 0.28 0.33 0.82 0.5 0.51 0.92 0.49 0.45 0.79 0.5 0.5 0.81 0.5 0.54 0.88 

FPN 0.45 0.41 0.07 0.76 0.76 0.85 0.55 0.59 0.92 0.54 0.51 0.8 0.55 0.54 0.82 0.55 0.6 0.88 

LINKNET 0.5 0.49 0.07 0.35 0.41 0.85 0.5 0.51 0.92 0.49 0.45 0.79 0.5 0.5 0.82 0.5 0.54 0.88 

U2NET 0.23 0.2 0.24 0.89 0.76 0.7 0.55 0.61 0.59 0.59 0.58 0.55 0.63 0.61 0.68 0.74 0.71 0.72 

UNET 0.18 0.07 0.06 0.9 0.86 0.86 0.82 0.93 0.93 0.8 0.81 0.81 0.82 0.84 0.83 0.79 0.88 0.89 

UNET++ 0.48 0.47 0.07 0.76 0.77 0.84 0.52 0.53 0.92 0.51 0.47 0.79 0.52 0.52 0.82 0.52 0.56 0.87 

VNET 0.48 0.47 0.09 0.74 0.76 0.81 0.52 0.53 0.9 0.51 0.47 0.76 0.51 0.51 0.81 0.52 0.56 0.85 

Proposed 0.17 0.06 0.06 0.93 0.87 0.89 0.83 0.94 0.94 0.81 0.82 0.81 0.83 0.84 0.84 0.8 0.89 0.9 

 

TABLE IV: EVALUATION OF SARSNET FOR DIFFERENT LOSS 

FUNCTIONS 

Loss Function  MIoU (%)  Precision (%)  F-1 Score (%) 

Tversky Loss [23]  89 84.3 81.1 

BCE Jaccard Loss  86.1 78.4  77.8 

 

D. Qualitative Analysis 

Here we analyze the output quality and compare the 

performance of our model to earlier models in segmenting 

both large and narrow water bodies. We randomly selected 

six predictions from our testing dataset, as shown in Fig. 5. 

The initial four rows correspond to VH, VV, DEM, and 

Ground Truth (GR), while the subsequent rows display the 

predicted result generated by the models. Our proposed 

model’s predictions are placed in the last row. In the 

presentation of results for each of the six scenarios, we 

observe distinct outcomes derived from the models. 



 
Fig. 5. A total of six samples, selected at random, have been chosen for the purpose of evaluating the performance of our proposed SARSNet in 

comparison to the existing samples. 



A noteworthy observation is that U2NET [30], Attunet 

[31], DNCNN [3], Unet++ [29], and VNET [34] exhibit 

limitations in accurately predicting water pixels across all 

six samples. In contrast, our newly proposed SARSNet, 

along with Unet [28], LINKNET [33], and FPN [32], 

demonstrated superior abilities to forecast water pixels 

accurately when compared to alternative models. However, 

FPN [32] and LINKNET [33] also exhibit weak 

performances in the fourth column while the U2NET [30] 

and Unet3PP [35] had the worst performance. SARSNet 

excels in detecting both small and large water areas. 

Clearly, our proposed SARSNet consistently outperforms 

all other models, demonstrating exceptional performance 

in accurately predicting nearly all water pixels while 

maintaining a remarkably low level of noise. 

IV. DISCUSSION AND FUTURE WORK 

The SARSNet architecture was developed to address 

two key challenges. Firstly, obtaining sufficient annotated 

data is a significant hurdle in deep learning, with a growing 

demand for diverse Dataset. Secondly, deep learning relies 

on complex feature representations, reducing the need for 

extensive feature engineering but increasing the need for 

annotated data. Our dataset had specific limitations, and 

we can enhance the model’s performance by exploring 

advanced data augmentation techniques like style transfer, 

GAN generated data, and different input shapes. Balancing 

class distribution, customizing the loss function, and fine-

tuning the hyperparameters, such as dropout rates and 

kernel numbers, can improve the model’s performance. 

SARSNet, optimized for water body detection using SAR 

data, outperforms Unet with similar training times. 

In our upcoming research, we will explore advanced 

methods like style transfer and GANs. We’ll modify our 

model to also handle RGB bands, employing transfer 

learning for comparison.  

We’ll also assess the effects of different input SAR 

polarities on model performance, adjusting model layers 

for further advancement in this field. Our future work aims 

to enhance the model’s performance and versatility. 

V. CONCLUSION 

This study presents an innovative methodology for the 

delineation of water bodies from satellite imagery, 

drawing upon advanced deep learning techniques in the 

realm of satellite remote sensing. Notably, our proposed 

model uses a reduced number of parameters in comparison 

to its predecessors, while delivering superior performance. 

A significant contribution of our research lies in the 

introduction of two innovative preprocessing techniques. 

Firstly, the FR module is designed to integrate and 

normalize the VH and VV polarizations alongside the 

DEM data. This fusion aids in enhancing the overall 

quality of the input data. Secondly, the PAN augmentation 

algorithm was employed to generate image patches. 

Critically, this algorithm ensures that the image resolution 

is preserved throughout the augmentation process. In our 

evaluations, the SARSNet approach demonstrates 

superiority over existing state-of-the-art methodologies. 

This was particularly evident when assessing the 

performance of metrics such as the Mean Intersection over 

Union (MeanIoU) scores. On the qualitative analysis, our 

model shows proficiency in accurately delineating water 

bodies. Our approach differs from conventional Unet 

models, which predominantly focus on the segmentation 

of large water bodies. Instead, our methodology harnesses 

the power of advanced augmentation techniques to detect 

and delineate even the smallest water bodies, thereby 

expanding the scope and applicability of satellite-based 

water body detection systems. 
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