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Abstract—This study tackles the challenge of optimizing 

associative memory for efficient data retrieval from large 

databases, crucial in real-time processing. The authors 

specifically address the issue of increased detection time in 

the minimum Hamming distance search associative memory, 

particularly as the number of data bits grows. This memory 

system utilizes Hamming distance as a key metric to identify 

the most similar reference data. Our contribution is the 

development of a new Hamming distance detection circuit 

employing neuron Complementary Metal Oxide 

Semiconductor (CMOS) inverters. This proposed circuit 

significantly outperforms existing models in terms of 

operational speed. The effectiveness and improved 

performance of the circuit are validated through 

simulations using HSPICE, a type of Simulation Program 

with Integrated Circuit Emphasis (SPICE) demonstrating 

its potential for more efficient real-time data retrieval 

applications.1 

Index Terms—associative memory, hamming distance, high-

speed 

I. INTRODUCTION 

Technologies for high-speed retrieval of the most 

similar data from data stored in a database, such as face 

recognition, DNA pattern matching, and image 

compression, are being used in all kinds of situations [1–

3]. Recently, with the proliferation of IoT, the amount of 

information has increased rapidly, and stream data 

processing, which processes large amounts of data in 

real-time, has attracted attention. However, when 

similarity search processing is performed on a computer, 

data is called up and compared sequentially, so the search 

time becomes very large as the number of data to be 

compared increases. Deep learning is currently being 

actively researched as a method to improve detection and 

processing time, including in medical and various other 
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applications [4–6]. However, this method requires a large 

amount of data and time for training and is not easy to 

prepare in advance. 

To solve these problems, associative memory, one type 

of functional memory, has been actively studied [7–12]. 

Associative memory is a memory that, in addition to the 

usual memory functions, can perform fast search 

operations by searching the most similar data to the input 

data in the database in parallel for comparison. Similarity 

indices include Hamming distance, Manhattan distance, 

and Euclidean distance [13, 14]. Hamming distance is 

used for fingerprint recognition and character recognition, 

while Manhattan distance and Euclidean distance are 

used for color image recognition, etc. 

Humans are good at association and recognition, and 

given a fragment of information, they can instantly 

associate what it is from their vast memory. The authors 

focused on a neuron Complementary Metal Oxide 

Semiconductor (CMOS) inverter, which has properties 

similar to those of neurons in the brain [15]. The neuron 

CMOS inverter has been studied for application to A/D 

converters and a variety of other circuits since complex 

operations can be achieved with a simple circuit 

configuration [16–19]. Therefore, the authors wondered 

whether this device could be used to realize a high-speed 

associative memory with a simple configuration. In a 

minimum Hamming distance search associative memory 

that retrieves the most similar data using the Hamming 

distance as an index, the Hamming distance detection 

circuit that detects the Hamming distance between two 

data is a very important functional circuit. The authors’ 

research group has proposed a Hamming distance 

detection circuit by utilizing a neuron CMOS inverter 

[20–22]. Conventional circuits detect the Hamming 

distance by converting the Hamming distance into the 

time it takes for the output signal to change. Therefore, 

this circuit has the problem that the detection time 

increases with each increase in the number of data bits. 



To solve this problem, this paper proposes a new 

Hamming distance detection circuit based on neuron 

CMOS inverters. The proposed circuit can suppress the 

increase in time with increasing Hamming distance by 

varying the capacitance between the input terminal and 

the floating gate of the neuron CMOS inverter. The 

operation of this circuit was also verified using HSPICE, 

a circuit simulator. 

II. CIRCUIT CONFIGURATION 

When A = (a1, a2, …, aN) and B = (b1, b2, …, bN) are N-

bit binary numbers, the Hamming distance DH of A and B 

is the sum of different bits and is defined as follows:  
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where “XOR” is the exclusive OR.  

Fig. 1 shows the circuit configuration of the proposed 

Hamming distance detection circuit using a neuron 

CMOS inverter. Fig. 2 shows the equivalent circuit of  

Fig. 1. 

 
Fig. 1. Circuit configuration of the proposed circuit. 

 
Fig. 2. Circuit configuration of the equivalent circuit of the proposed 

circuit. 

In Fig. 1 and Fig. 2, VDD is the supply voltage, A = (a1, 

a2, …, aN) is the input data, B = (b1, b2, …, bN) is the 

reference data, and F and G are the control signal. The 

neuron CMOS inverter νCMOS in Fig. 1 is equivalent to 

the circuit consisting of an inverter with capacitors C and 

an inverter with transistors M4 and M5 in Fig. 2, and the 

input terminal-to-floating gate capacitance C of the 

νCMOS is designed to be all equal. 

First, the control signal F is set to a low-level, G is set 

to a high-level, switch SW1 is turned ON, SW2 is 

connected to the lower side, and SW3 is turned ON.  For 

this operation, the floating gate voltage VF of νCMOS is 

equal to the threshold voltage VTH, which is expressed by 

THFV V                               (2) 

Since the control signal F is a low-level, the outputs of all 

NANDs become a high-level and the output OUT 

becomes a low-level. 

Next, after SW1 is turned OFF, SW2 is connected to 

the upper side. At this point, the change in the floating 

gate voltage of νCMOS, ΔVF, when the voltage at one of 

the input terminals of the CMOS changes to ΔV is 

expressed as follows: 

F

T

C
V V

C
   .                           (3) 

where CT in the equation is the sum of the capacitance 

between the input terminal and the floating gate of 

νCMOS, and is expressed as follows: 

 1TC N C  .                          (4) 

When SW2 is connected to the upper side, the voltage at 

the bottom input terminal of the νCMOS in Fig. 1 

changes from VTH to VDD, and the floating gate voltage 

FV   at this time becomes 

 TH DD THF

T

C
V V V V

C
    .                (5) 

From this equation, FV   exceeds the threshold voltage VTH, 

so the output OUT of νCMOS becomes a low-level. 

When the control signal F is set to a high-level, the 

output Vi of the NAND changes from a high-level to a 

low-level if the ith bit ai of the input data and the ith bit bi 

of the reference data are not equal. If the Hamming 

distance between the input data A = (a1, a2, …, aN) and 

the reference data B = (b1, b2, …, bN) is DH, the output of 

DH NAND changes from the supply voltage VDD to 0V. 

When the floating gate voltage VF is FV   at this time, it is 

expressed by the following equation. 

 TH DD TH DDF H

T T

C C
V V V V D V

C C
             (6) 

From this equation, the floating gate voltage FV   is below 

the threshold voltage VTH, so the output of νCMOS is at a 

high-level and the output OUT remains at a low-level. 



Finally, SW3 is turned off, and the control signal G is 

set to a low-level. With SW3 turned OFF, the capacitance 

between the input terminal and the floating gate of the 

νCMOS is disconnected except for the first input terminal 

from the top. When the control signal G becomes a low-

level, MOS transistor M3 turns ON and a constant current 

begins to flow from the current mirror circuit consisting 

of R, M1, and M2. This causes the floating gate voltage VF 

to rise linearly from FV  . When this exceeds the threshold 

voltage VTH, the output of the neuron CMOS inverter 

becomes a low-level and the output becomes a high-level. 

When the constant current flowing through M3 is I, the 

time T from when the control signal G is set to a low-

level until the output OUT becomes a high-level is 

expressed by 

 TH FC V V
T

I


 .                          (7) 

Substituting (6) into this equation gives 
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By substituting (4) into this and rearranging the equation, 

the time T can be expressed as follows: 
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The time difference ΔT when the Hamming distance 

differs by 1 is expressed by 

 1
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From Eq. (9) and (10), it can be seen that the time T 

from when the control signal G becomes a low-level until 

the output OUT becomes a high-level is proportional to 

the Hamming distance. By measuring this time difference, 

the proposed Hamming distance detection circuit can 

detect the Hamming distance between two data. 

Furthermore, it can be seen that although the detection 

time increases as the Hamming distance DH increases, the 

detection time decreases as the number of data bits in 

data N increases. 

From the above, the proposed circuit reduces the 

capacitance between the input terminal and the floating 

gate of the νCMOS by controlling SW3, thereby reducing 

the charging time. Therefore, the proposed circuit does 

not decrease the detection speed even when the number 

of data bits N increases and can operate faster than the 

conventional circuit. 

III. SIMULATION RESULTS 

The proposed Hamming distance detection circuit was 

simulated in HSPICE, HSPICE, a type of Simulation 

Program with Integrated Circuit Emphasis (SPICE), for 

the case where the number of bits is 8. The simulations 

were performed using SPICE parameters for ROHM’s 

0.18 μ CMOS process, with a supply voltage of 1.8 V for 

VDD and a threshold voltage VTH for the floating gate of 

the neuron CMOS inverter designed to be 0.9 V, half of 

VDD. The equivalent circuit shown in Fig. 2 was used for 

the simulation. 

Fig. 3 shows the simulation results of the floating gate 

voltage of the neuron CMOS inverter when reference 

data with a Hamming distance of 1–4 is input. In this 

figure, t1 represents the point in time when the control 

signal F is set to a low-level, SW1 is turned ON, SW2 is 

connected to the lower side, and SW3 is turned ON; t2 

represents the point in time when SW1 is turned OFF and 

SW2 is connected to the upper side; t3 represents the point 

in time when the control signal F is set to a high-level; t4 

represents the time when SW3 is turned OFF and the 

control signal G is set to a low-level. The floating gate 

voltage VF is equal to the threshold voltage VTH at the 

time t1 and rises and exceeds VTH at t2. At the time t3, the 

floating gate voltage VF decreases in proportion to the 

Hamming distance. Finally, at the time t4, the floating 

gate voltage begins to increase linearly. When the 

floating gate voltage exceeds the threshold voltage of the 

neuron CMOS inverter, its output changes from a high-

level to a low-level. The simulation results show that the 

time it takes for the output to change is proportional to 

the Hamming distance. The proposed circuit can detect 

the Hamming distance between the two data by this time 

difference. 

 
Fig. 3. Simulation results of the floating gate voltage. 
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Fig. 4. Relationship between the search time and Hamming distance. 



Fig. 4 summarizes the detection times of the proposed 

circuit and the conventional circuit in [20]. From this 

figure, it can be seen that the proposed circuit operates 

faster than the conventional circuit. In the conventional 

circuit and the proposed circuit, the sum of the 

capacitances between the input terminals and the floating 

gate of the neuron CMOS inverter increases with the 

number of bits. Therefore, in the conventional circuit, the 

time until the floating gate voltage reaches the threshold 

voltage after G is set to a low-level increases in 

proportion to the number of bits. However, the proposed 

circuit can achieve high-speed operation even as the 

number of bits increases by disconnecting the capacitance 

other than the top one during charging. 

IV. CONCLUSION 

In this study, the authors proposed a novel Hamming 

distance detection circuit using the neuron CMOS 

inverter. The proposed Hamming distance detection 

circuit solves the problem of increasing the detection time 

with increasing the number of bits, which has been a 

problem in the conventional circuit, by changing the 

capacitance between the input terminal and the floating 

gate of the neuron CMOS inverter. 

The desired operation of this circuit was confirmed by 

HSPICE simulation. Furthermore, it was found that the 

proposed circuit can operate even faster than the 

conventional circuit. 

In future work, it is planned to fabricate a prototype 

chip of the proposed circuit and conduct experiments and 

evaluations using the chip. 
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