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Abstract—Fog-cloud computing is a promising platform for 

processing Mobile Crowdsensing (MCS) tasks that come with 

different requirements. A fog environment is more suitable 

for processing time-sensitive tasks due to its proximity to the 

MCS layer. On the other hand. the cloud environment 

provides powerful resources to handle large tasks. However, 

due to the heterogeneity of the computing nodes, scheduling 

MCS tasks in a fog-cloud environment is a challenging issue. 

This paper presents a non-cooperative game theoretical 

model for the task scheduling problem of MCS tasks in the 

fog-cloud environment. Then, the paper presents an 

improved genetic algorithm to efficiently solve the problem 

of task scheduling game model with main enhancements 

including a new strategy to generate a diverse initial 

population, incorporating the utility function of the game 

theoretical model with system fitness function, and finally, 

the paper introduces a new strategy for population sorting 

and grouping with applying adaptive crossover operator to 

meet the specific needs of each group. This improves the 

exploration of the unseen regions of the search space, as well 

as exploiting the already-found promising solutions, 

ultimately leading to a faster convergence toward the optimal 

solution. The experimental results demonstrate that the 

proposed approach has better performance in terms of 

reducing the makespan by 26%, decreasing the energy 

consumption by 32.4%, decreasing total system cost by 28%, 

and decreasing the degree of imbalance by 21.53% as 

compared with other scheduling approaches such as Discrete 

Non-dominated Sorting Genetic Algorithm II (DNSGA-II), 

Grasshopper Optimization Algorithm (GOA), Grey Wolf 

Optimization (GWO, Time-Cost Aware Scheduling (TCaS), 

Moth Flame Optimization (MFO), and Bees Life Algorithm 

(BLA). 

Index Terms—cloud computing, fog computing, genetic 

algorithm, Mobile Crowdsensing (MCS), task scheduling, 

 

I. INTRODUCTION 

Mobile crowdsensing (MCS) has emerged as a powerful 

paradigm for collecting real-world data by leveraging the 

pervasive presence of mobile devices, such as smartphones 

and wearables [1]. This innovative approach enables the 

acquisition of real-time, fine-grained information, making 

it a critical component in various applications, including 

smart cities, environmental monitoring, healthcare, and 

transportation [2–4]. However, as the scale and complexity 

of MCS applications grow, and due to the limitation of 

MCS devices in terms of power resources and 

computational capability, they need to offload their tasks 

to external servers for processing. Cloud computing offers 

significant computational power and storage capacity to 

process data-intensive tasks [5], but it tends to introduce 

higher latency due to the distance that data needs to travel 

between the MCS devices and the Cloud servers [6]. This 

latency can be problematic for real-time applications. On 

the other hand, Fog computing is a distributed computing 

paradigm, where computational resources and storage are 

placed closer to the data sources of MCS devices, typically 

at the network edge. Fog computing is beneficial to reduce 

latency and improve response time, it is well-suited for 

tasks that require low-latency processing [7]. Fog 

computing faces limitations in terms of computational 

capacity and storage capabilities, that make it not suitable 

for processing data-intensive tasks. Hence, there is a need 

for an integrated fog-cloud architectural paradigm that 

combines the advantages of both fog and cloud 

environments. 

Fog-cloud computing, an emerging paradigm, merges 

the advantages of cloud computing and fog computing to 

tackle the challenges arising from the growing demand for 

time-sensitive data processing with low latency and 

resource-intensive applications [8, 9]. Although integrated 

fog-cloud computing systems offer various benefits, it also 

presents several challenges. One of the key challenges in 

such systems is task scheduling [10, 11]. Task scheduling 

in fog-cloud systems involves allocating computational 

tasks to appropriate fog nodes or cloud servers, aiming to 

optimize the overall system performance. The problem 

becomes even more challenging due to the heterogeneity 

of resources, varying network conditions, and dynamic 

task requirements. Traditional centralized scheduling 

approaches, designed for cloud-only environments, may 

not be well-suited for fog-cloud scenarios due to the 

distributed nature and resource constraints of the fog nodes. 

To tackle the task scheduling problem in a fog-cloud 

environment, this paper proposes an approach that 

combines genetic algorithms and game theory. Genetic 

algorithms are well-known optimization techniques 

inspired by natural selection and genetics. They can 

efficiently explore the solution space and evolve towards 

optimal solutions by employing genetic operators such as 
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crossover and mutation [12–14]. Game theory, on the other 

hand, is a mathematical tool for analyzing and modeling 

strategic interactions among rational decision-makers, 

often referred to as “players”. It is widely used in various 

fields, including economics, political science, biology, and 

computer science, to understand and predict how 

individuals or entities make decisions in competitive or 

cooperative situations [15]. Additionally, the versatility of 

game models enables the analysis of task scheduling in 

different computing environments efficiently. In task 

scheduling problems, game theory can be utilized to model 

the interactions between computational tasks and system 

resources, thereby assisting in the optimization of task 

scheduling [16]. In this paper, the MCS tasks scheduling 

problem in fog-cloud computing systems is formulated as 

a non-cooperative game to optimize various system 

parameters such as makespan, energy consumption of the 

nodes, and total system cost. Non-cooperative game is a 

branch of game theory that focuses on scenarios where 

players, or decision-makers, pursue their objectives 

independently, without any formal collaboration. 

Additionally, the paper seeks to address the satisfaction of 

MCS participants and mitigate the selfishness in terms of 

their profit. To tackle the problem, the paper utilizes the 

genetic algorithm with some useful modifications to solve 

the non-cooperative scheduling game. Integrating genetic 

algorithms with non-cooperative game theory concepts for 

solving task scheduling problems in the fog-cloud system 

can be highly effective. It allows for the optimization of 

individual objectives through Genetic Algorithms (GAs) 

while considering strategic interactions among players 

(MCS participants), resulting in efficient task mapping and 

improved performance in fog-cloud environments. The 

proposed Game Theory-Based Genetic Algorithm (GTGA) 

measures makespan, energy consumption, system cost, 

degree of imbalance, and throughput. GTGA simulated 

using the CloudSim environment. 

The main contributions of this paper are summarized as 

follows. 

 Model the task scheduling problem for MCS tasks in 

the fog-cloud environment as a non-cooperative game. 

In the proposed model, the MCS participants 

represent the game players, where each player aims to 

maximize his profit. The utility function of the game 

is modeled mathematically. 

 Introduce a modified genetic algorithm with 

enhancements in the initial population, fitness 

function, and crossover operator to solve the 

scheduling game model and find a schedule that 

approximates optimality.  

 Introduce a new approach for generating the initial 

population in the genetic algorithm. This approach 

explores the diverse locations of the search space to 

avoid falling in the local optima in the first iterations 

and to help reach the optimal solution faster. 

 Present a new sorting and grouping strategy for the 

population intending to enhance both the exploitation 

and exploration of the genetic algorithm. 

Subsequently, the crossover operator is applied 

individually to each group following its specific 

requirements. 

The remainder of this paper is structured as follows: In 

Section II, a review of the existing research in this area is 

introduced. The system model, mathematical 

representation, the proposed scheduling approach, and the 

performance metrics are introduced in Section III. Section 

IV provides the experimental outcomes, performance 

assessment, and a discussion of the findings. Finally, 

Section V concludes the paper. 

II. RELATED WORKS 

The task scheduling problem is one of the key 

challenging issues in fog-cloud systems. Recently, this 

problem has attracted significant attention due to its 

important role in improving the total execution time, total 

cost, and power consumption of such systems. This section 

reviews relevant research efforts and then highlights the 

main difference between our work and existing studies. 

Hoseiny et al. [17] introduced a heuristic algorithm for 

fog-cloud computing, called priority-aware genetic 

algorithm (PGA). Their algorithm is designed to optimize 

a multi-objective function that involves a weighted 

combination of several factors, including the overall 

computation time, energy consumption, and the 

Percentage of Deadline-Satisfied Tasks (PDST). They 

consider the diverse requirements of tasks and the 

heterogeneity of fog and cloud nodes. Their approach 

combines task prioritization and a genetic algorithm to 

select the most suitable computing node for each task.  

Elaziz et al. [18] presented a task scheduling method for 

handling Internet of Things (IoT) requests in a cloud-fog 

computing environment. The proposed approach, named 

AEOSSA (artificial ecosystem-based optimization with 

salp swarm algorithm), is an enhancement of the Artificial 

Ecosystem-Based Optimization (AEO) technique. It 

incorporates elements from the Salp Swarm Algorithm 

(SSA) to enhance its capacity for discovering optimal 

solutions. To assess the effectiveness of AEOSSA, the 

researchers conducted experiments using various real-

world and synthetic datasets of different sizes.  

Wang et al. [19] proposed a novel task scheduling 

method, denoted as I-FASC, for scheduling tasks with 

different attributes in the fog-cloud environment. 

Additionally, an enhanced genetic algorithm, I-FA, is 

presented, incorporating a firework explosion radius 

detection mechanism.  Their proposed approach can help 

minimize task processing time and provide better load 

balancing for fog devices. 

Nguyen et al. [20] focused on addressing the task 

scheduling problem within the Bag of Task (BoT) 

applications in a fog-cloud computing environment. They 

introduced a Time-Cost Aware Scheduling (TCaS) 

algorithm aimed at resolving this issue. The primary 

objective of the TCaS algorithm is to achieve an optimal 

balance between the time it takes to execute the tasks and 

the associated monetary costs within the fog-cloud system. 

Additionally, this algorithm demonstrates adaptability to 

varying user requirements, allowing for customization 



 

based on preferences such as prioritizing based on time or 

cost. 

Alsamarai et al. [21] introduced a task scheduling 

algorithm known as the “bandwidth-deadline algorithm”, 

designed to optimize makespan and ensure timely task 

completion in a cloud-fog environment. This algorithm 

places significant emphasis on task deadlines by 

prioritizing tasks with the earliest deadlines and assigning 

them to resources capable of completing them in the 

shortest time to minimize the makespan. The algorithm 

comprises two key components: the first part, named “fog 

max–cloud min”, and the second part, which utilizes Ant 

Colony Optimization.  

The primary focus of [22] is optimizing the scheduling 

of IoT requests in a hybrid fog-cloud computing 

environment to minimize latency, specifically the round-

trip time (RTT) involved in processing these requests. The 

authors employed an integer linear program to solve and 

validate the model. Also, to address larger-scale problems, 

a modified genetic algorithms (GA) heuristic approach 

was developed, allowing for feasible solutions of high 

quality within reasonable computational time. 

Ali et al. [23] introduced a multi-objective optimization 

problem for task scheduling to minimize both makespan 

and total costs in a fog-cloud environment. To tackle the 

discrete nature of this multi-objective task-scheduling 

problem, they presented an optimization model that 

employs the Discrete Non-dominated Sorting Genetic 

Algorithm II (DNSGA-II). This model also automates the 

allocation of tasks to either fog or cloud nodes. The 

adaptation of the NSGA-II algorithm involves the 

discretization of the crossover and mutation evolutionary 

operators, as opposed to using continuous operators that 

require significant computational resources and are not 

suitable for precise computing node allocation. 

Hoseiny et al. [24] designed two algorithms for 

scheduling volunteer requests in volunteer computing 

systems (VCSs), named min-CCV and min-V. they 

formulated the task scheduling problem in fog-cloud 

computing as a mixed integer linear programming (MILP) 

with the purpose of supporting both QoS for IoT tasks and 

low computation and communication costs for the fog-

cloud system. The primary objective of the proposed 

algorithms is jointly minimizing the computation, 

communication, and delay violation cost for the internet of 

things (IoT) requests. 

Dabiri et al. [25] introduced a system model designed to 

address the job (set of tasks) scheduling problem within 

the context of cloud-fog computing. Their primary 

objective was to optimize both the energy consumption of 

the fog-cloud system and the total deadline violation time 

of jobs. Subsequently, the authors proposed two nature-

inspired optimization techniques, namely the Grey Wolf 

Optimization (GWO) and the Grasshopper Optimization 

Algorithm (GOA), to effectively tackle the job scheduling 

problem within the cloud-fog environment.  

Due to the complexity of the task scheduling problem 

which is considered an NP-hard optimization problem, 

most of the researchers used greedy heuristic and 

metaheuristic approaches to find near-optimal solutions. In 

the literature, some of the researchers employed 

metaheuristic algorithms in their works. But none of them 

consider the weakness of such algorithms in terms of 

exploration and falling in local optima. Also, most of the 

literature focus on the optimization of the fog-cloud 

system metrics only, they ignore satisfying the user 

requirements that aim to improve their profit in term of 

cost and reduce the execution time. Moreover, a few 

algorithms have considered a scheduling model for MCS 

tasks with a given deadline and cost constraints by the Fog-

Cloud system. To address these gaps, this study proposed 

a scheduling model that guarantees meeting both the fog-

cloud system and MCS participants’ requirements by 

modeling the task scheduling problem as a non-

cooperative game for the self-interested MCS participants. 

To solve the scheduling game, the proposed work utilized 

the genetic algorithm with some enhancements to help 

reach the near-optimal solution (Nash equilibrium point of 

the game model) quickly and to avoid falling in local 

optima during the searching process. 

III. PROBLEM FORMULATION 

A. System Architecture 

The system architecture comprises three layers called 

MCS, fog, and cloud layers. Each layer is composed of 

different devices, nodes, and servers, respectively. The 

architecture of the MCS-fog-cloud system is illustrated in 

Fig. 1. 

 
Fig. 1. Proposed MCS-Fog-Cloud architecture. 

The MCS layer serves as the first tier and consists of a 

multitude of mobile devices owned by individuals or 

participants. These devices are equipped with various 

sensors, such as GPS, cameras, and accelerometers, 

enabling them to collect and contribute data about the 

surrounding environment to the upper (Fog and cloud) 

layers. Fog layer represents the second layer and serves as 

the intermediate tier between the MCS and Cloud layers. 

It comprises fog nodes, which are edge devices located 

closer to the end-users or MCS devices. The primary 
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objective of this layer is to process data and execute tasks 

in proximity to the data source, reducing communication 

latency and bandwidth consumption. Fog nodes often have 

more computational capabilities than mobile devices, 

enabling them to handle more compute-intensive tasks. 

The cloud computing layer represents the backend of 

the architecture, comprising large-scale data centers and 

cloud servers. This layer possesses abundant 

computational resources and storage capacities, making it 

suitable for handling resource-intensive and data-intensive 

tasks. The cloud layer serves as a centralized resource pool 

that can process tasks from both the MCS and Fog layers.  

Fog broker consists of three main components: task 

manager, task scheduler, and resource monitor. Each 

component comes with different characteristics and 

functions, the function of the first component includes 

several operations. In the initial phase, it receives sensing 

requests from MCS data requesters, who may be 

individuals or organizations seeking to observe specific 

phenomena. Subsequently, the task manager dispatches 

the sensing task along with its description to the MCS 

participants. Ultimately, the task manager collects the 

completed tasks from the MCS participants and evaluates 

the sensed data based on criteria such as deadline, size, and 

duration. The resource monitor component is responsible 

for monitoring and evaluating the fog and cloud nodes and 

periodically provides the task scheduler with a report about 

the system resource’s status. The task scheduler represents 

the principal component of the fog-cloud broker. This 

component acts as a decision-making entity responsible 

for intelligently distributing tasks to available fog nodes or 

cloud resources based on the information and data received 

from the task manager and resource monitor components. 

Fig. 2 shows the block diagram of task scheduling 

operations in the MCS-Fog-cloud system. Overall, In the 

ecosystem of mobile crowdsensing (MCS), the data flow 

between data requesters and MCS participants involves a 

dynamic exchange orchestrated by the Mobile 

Crowdsensing platform. Data requesters initiate the 

process by submitting requests to the MCS platform. The 

MCS platform acts as an intermediary, disseminating these 

requests to a pool of available MCS participants, who are 

individuals with mobile devices equipped to collect 

relevant data. The platform facilitates communication and 

coordination between data requesters and workers, 

ensuring a streamlined flow of information. Upon 

receiving tasks, MCS workers utilize their mobile devices 

to capture and transmit the requested data back to the 

platform. The platform schedules the data to the fog nodes 

and cloud servers for more processing before delivering it 

to the original data requester.  

 
Fig. 2. Block diagram of task scheduling operations for MCS in a fog-cloud system. 
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B. Mathematical Formulation of the Proposed Model 

In the MCS-fog-cloud architecture, first of all, the 

sensing tasks are released with their descriptions to the 

MCS participants through the MCS sensing platform. The 

descriptions include constraints on time to complete the 

sensing task, task length, and file size. Also, the 

description includes a price offer for MCS participants to 

complete the sensing task. In order to ensure the validity 

of the sensing data, the task manager needs to set an 

effective time (D) for the MCS participants to complete the 

sensing task, this helps to overcome the problems that 

come with the time-sensitive sensing tasks. Also, the task 

manager specifies the allowed task length which should 

fall in the range [ℓmin, ℓmax], the last constraint is the file 

size of the task which is preferred to fall in the range 

[𝑠min, 𝑠max]. Maintaining the task length, and size within 

specified ranges leads to controlling and optimizing the 

fog-cloud system performance in terms of execution time 

and cost. In addition, it benefits the MCS participants by 

reducing sensing time and energy consumption. Based on 

the response of the MCS participants to these constraints, 

the fog-cloud platform presents a price offer P to the 

participants. P represents the expected profit for MCS 

users to participate and accomplish the sensing task and is 

denoted as  

𝑃min < 𝑃 < 𝑃max                          (1) 

where Pmin represents a fixed cost to participating in the 
sensing platform and Pmax represents the maximum price 
values that can be paid to the MCS participants and should 
satisfy the constraints: 

𝑃max < 𝐵platform/M                          (2) 

where 𝐵platform   represents the total budget of the sensing 

platform gained from the task requesters (customers or 

organizations). M represents the number of workers 

employed to sense and collect data. The fog-cloud broker 

receives a set of tasks (T) from the MCS participants, 𝑇 =
{𝑇1, 𝑇2, … . , 𝑇𝑀}, with each task defined by three primary 

parameters 𝑇𝑗 = (ℓ𝑗 , ḏ𝑗 , 𝑠𝑗). In this context, ℓ𝑗 indicate the 

task length, ḏj represents the time taken to accomplish and 

submit the sensing task, and sj is the task size in megabytes. 

Also, consider the fog-cloud system has a set (V) of N 

nodes 𝑉 = {𝑉1, 𝑉2, … , 𝑉𝑁} where V is the combination of a 

set of fog nodes 𝐹 = {𝐹1, 𝐹2, … , 𝐹𝑘}, and set of cloud nodes 

(virtual machines) in cloud layer 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑙}, 𝑉 =
𝐹 ∪ 𝐶. Each node within 𝑉 is characterized by its available 

CPU Million instructions per second (MIPS), memory size, 

and storage, 𝑉𝑖  =  (MIPS𝑖 , MEM𝑖 , ST𝑖). Table I shows the 

notation used with the formulation of the proposed model. 

The system will be modeled as a non-cooperative game 

with complete information, where each task acts as a 

player in the game.  

TABLE I: USED NOTATION 

Notation Description 
T Set of Tasks 

F, C Set of Fog layer nodes, set of cloud layer nodes 

V Set of Fog-Cloud system nodes 

M Number of Tasks in T 

N Number of fog-cloud nodes in V 
Tj The jth task in the set T 

Vi The 𝑖𝑡ℎ node in fog-cloud system 
ℓj Length of Tj 

ḏj Time consumed to complete the sensing task Tj 

D Time allowed to complete the sensing task 

MIPSi Million Instructions per Second of node Vi 

MEMi The available memory size of the node Vi 

STi Available Storage of node Vi 

P Price offer to participate in the sensing task 

uj(s) The utility function of the player  Tj 

Ej The Effort level of the MCS participant  

Costj,i  Total cost of executing Tj  on Vi 

ETj,i Execution Time of Tj  on Vi 

ETvi Total execution time of node Vi 

𝐶𝑖
cpu

 Computing cost of node Vi 

𝐶𝑖
ram Cost of memory usage of node Vi 

𝐶𝑖
bw Cost of bandwidth usage of node Vi 

RB𝑗, RM𝑗 Required memory, the bandwidth of task  Tj 

HD Hamming Distance 

Ɛi Power consumption of node Vi 

 
In this framework, each player (MCS participant task) 

aims to maximize their own utility, making strategic 
choices based on their private information and preferences. 
The players make the decision by choosing a suitable 
strategy (selection of a suitable node for processing) to 
independently archive their goals. The game model is 
expressed as 

G = (M, S, U)   (3) 

In this context, M represents the total number of players 

participating in the game, while S refers to the collective 

set of strategies chosen by all the players, 𝑆 = 
{𝑠1, … , 𝑠𝑚−1, 𝑠𝑚} , and U denotes the payoff, 𝑈 =
{𝑢1(𝑠), … , 𝑢m(𝑠)}, where 𝑢𝑗(𝑠) denotes the payoff of the 

player Tj. The description of the game components is 

explained as follows: 

Players: In the task scheduling game, the players 

represent M tasks received from MCS participants 

(assuming that the tasks are independent and each task 

comes from a different MCS participant). 

Strategies: Each task should be allocated to a suitable 

fog or cloud node in order to optimize the scheduling 

objectives, the number of possible strategies for the player 

Tj represent the set of fog-cloud nodes (V) available to 

execute their tasks, where sj  denotes the strategy profile of 

the player Tj. 

Payoffs: In the scheduling game, each MCS participant 

tries to schedule their task to the node that maximizes his 

profit in terms of sensing cost, and execution time by 

selecting the best scheduling strategy. Therefore, the 

payoff of the player Tj is defined to be the maximizing 

function of the sensing price, given as  

𝑢𝑗(𝑠) = 𝐸𝑗𝑃max − Cost𝑖,𝑗                         (4) 

where Ej represents an Efficiency factor, denoting the 

effort level of the MCS participant and reflecting the 

quality of sensing. It falls within the range of 0 to 1, where 

higher values indicate that the task sensing and submitting 

was done within the given deadline, and the length of the 

task is within the specified length by the sensing platform. 

This higher efficiency refers to the MCS participant’s 

commitment to the constraints given by the sensing 



 

platform, in turn, contributes to maximizing the system 

performance and the profit of the MCS participant. The 

efficiency factor is calculated as 

𝐸𝑗 = 𝛼(1 −
ḏ𝑗

𝐷
) + 𝛽

ℓ𝑗

ℓmax
, where 𝛼 + 𝛽 = 1     (5) 

The values of 𝛼, and 𝛽 are selected to be 0.7, and 0.3 

respectively, this indicates that prioritizing the time 

constraint over the task length. This prioritization aims to 

ensure that sensing and submitting the task to the fog-cloud 

broker will be done within the given deadline by the 

sensing platform. The second factor that affects the profit 

of the MCS participant is the total cost of executing his 

task on a specific fog or cloud node Vi. The total execution 

cost (Cost𝑖,𝑗) includes CPU execution cost, memory usage 

cost, and bandwidth usage cost denoted as Cost 𝑖,𝑗
cpu

, 

Cost 𝑖,𝑗
ram, and Cost 𝑖,𝑗

bw, defined respectively as follows:  

Cost𝑖,𝑗 = (Cost𝑖,𝑗
cpu

+ Cost𝑖,𝑗
ram + Cost𝑖,𝑗

bw) (6) 

Cost𝑖,𝑗
cpu

= ET𝑗,𝑖 × 𝐶𝑖
cpu

  (7) 

Cost𝑖,𝑗
ram = RB𝑗 × 𝐶𝑖

ram  (8) 

Cost𝑖,𝑗
bw = RM𝑗 × 𝐶𝑖

bw  (9) 

Minimizing the total execution cost of the task Tj led to 

maximizing its final profit. In this context, RB𝑗 represents 

the required bandwidth to upload and download the task 

files, RM𝑗  the required memory, and ET𝑗,𝑖    refers to the 

execution time of the task Tj on the node Vi which is 

calculated as 

ET𝑗,𝑖 =
ℓ𝑗

MIPS𝑖
  (10) 

The payoff of playing M players is defined to be an 

increasing function of the profit of all MCS tasks. It is 

noticeable that the profit of each player is affected not only 

by its own scheduling strategy but also by the strategic 

choices of other players, the total payoff function 

calculated as 

𝑈𝑀(𝑆) = ∑ 𝑢𝑗(𝑠)𝑗   (11) 

Nash equilibrium represents one of the principal 

solution concepts for game theory in general and 

noncooperative games in particular. Nash equilibrium is a 

very important concept and is a widely used solution in the 

N-person noncooperative game [26]. In the Nash 

equilibrium (NE), the strategy of each player is considered 

optimal when it allows the player to attain their maximum 

payoff while taking into account the strategies adopted by 

the other players. Therefore, a NE point is represented as 

𝑆∗ = (𝑠1
∗, 𝑠2

∗, … , 𝑠𝑚
∗ ), where a strategy profile 𝑆∗ ∈ 𝑆 is a 

Nash Equilibrium in a strategic form game G if and only if 

the condition in equation (12) is satisfied, ∀𝑗 ∈ 𝑀  and 

∀𝑠𝑗 ∈ 𝑆𝑗. 

𝑢𝑗(𝑠𝑗
∗, 𝑠−𝑗

∗ ) ≥ 𝑢𝑗(𝑠𝑗 , 𝑠−𝑗
∗ )                      (12) 

where 𝑠−𝑗
∗  represent the strategies of all other players 

except player Tj. In this game, no player (task) can 

maximize his profit by changing it is own strategy only. 

According to the definition above, scheduling tasks are 

translated into searching the NE of the task scheduling 

game. This paper employs the GA to search the NE point 

of the proposed non-cooperative scheduling game. The 

mechanisms of the proposed GA will be described in detail 

in the next section. 

C. Game Theory Based Genetic Algorithm 

Given the NP-hard nature of the game model, a Genetic 
Algorithm is employed to search the NE point of this game. 
genetic algorithms (GAs) are search and optimization 
techniques inspired by the process of natural selection and 
evolution. It is commonly used to solve complex problems 

where traditional methods may be less effective. Genetic 
algorithms work by evolving a population of potential 
solutions to a problem over several generations. GAs are 
particularly suitable for solving optimization problems, 

which makes them a good choice for solving task 
scheduling problems in fog-cloud systems. 

Based on the framework of the basic GA, three 
improvements are incorporated into the GA, including 
presenting a new way for initializing the first population to 

ensure distribution of the initial population across the 
whole search space and avoid falling in the local optima in 
the first iterations. The next improvement is sorting the 
population according to individuals’ finesses and 

partitioning it into three equal (elite, moderate, and 
diversity) groups. Then performing the genetic crossover 
operator within each group with different crossover rates 
and types. The last improvement is incorporating the utility 

function of the game theory model with the fitness function 
of the genetic algorithm, this ensures optimizing the fog-
cloud system performance and mitigates the selfishness of 
the MCS participants. The following subsections describe 
the representation of the GA to meet the specification of 

our problem, and then introduce an algorithm to generate 
the initial population. This is followed by presenting and 
discussing the selection, crossover, and mutation operators 
used in the proposed GTGA algorithm. 

1) Encoding 
GA has chromosomes, and it is essential to encode them 

effectively to represent the task scheduling problem. There 
are many encoding techniques for GA to represent task 
scheduling problems. Our work uses discrete encoding, 
also known as integer number encoding. Discrete encoding 
makes a vector of 1×M dimension, where M is the number 
of genes (tasks in our work). It shows that for each gene 
there is a corresponding value representing the node 
number. Genes have only one allele whose range is the set 
of fog-cloud nodes V. 

As an illustrative example, suppose there are six tasks 
that can be denoted as 𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5, and 𝑇6. Tasks have 

to be mapped to three nodes represented as 𝑉1, 𝑉, and 𝑉3. 

Let the chromosome (Individual) be 𝐼 = 3, 2, 3, 1, 2, 2 . 
This implies that the 𝑇1  is assigned to 𝑉3 . Similarly, 

𝑇2, 𝑇3, 𝑇4, 𝑇5  and 𝑇6  are mapped to 𝑉2,  𝑉3, 𝑉1,  𝑉2  and 𝑉2 , 
respectively. As there are three nodes, there are three pools 
of tasks. Here in the mapping defined for chromosome 
𝐼, 𝑉1 gets only one task, so the pools are 𝑉1 = {𝑇4}, 𝑉2 =
{𝑇2, 𝑇5, 𝑇6} and 𝑉3 = {𝑇1, 𝑇3}. The agenda of the proposed 
GTGA is to find a chromosome (solution) representing the 



 

best schedule to meet the objectives of better makespan 
and total execution time. Fig. 3 shows the encoding and 
decoding process for the integer representation of the 
chromosomes. 

 
Fig. 3. Integer representation of the individuals. 

2) Initial population 
To ensure a uniform distribution of the initial population 

in the solution space, mitigate the centralized distribution 
in the local region of the search space, and enhance the 
diversity of the initial population, the first population can 
be initialized by incorporating the hamming distance 
technique. Hamming distance is a metric used to measure 
the difference between two sets of equal length, typically 
binary sets. However, it can also be applied to a set of 
integers. In the context of integers, hamming distance is 
used to quantify how many positions in two integer 
sequences differ. The hamming distance value falls in the 
range [0–1] by dividing the number of differences by the 
individual length. Hamming distance (HD) between two 
individuals can be calculated as [27]. 

HD(𝐼1, 𝐼2) =
 ∑𝑗=1
𝑀 𝐷𝑗

𝑀
                   (13) 

where 𝐷𝑗  is a boolean variable, represented as  

𝐷𝑗 = {
1 Genes on 𝑗th position is different

0 otherwise
 

For the proposed work, the first chromosome in the 

initial population will be generated randomly, then a 

threshold value 𝐻threshold  for the allowed difference is 

specified. Then, the remaining chromosomes will be 

generated randomly by ensuring that the average hamming 

distance of each newly generated chromosome with all 

individuals in the existing population is greater than the 

threshold value 𝐻threshold. The average hamming distance 

(AHD) is calculated as 

AHD(𝐼new) =
1

𝐾
∑𝑘=1
𝐾  HD(𝐼new, 𝐼𝑘 )            (14) 

where K represents the current count of the individuals in 

the population during the initialization process. If the AHD 

value is greater than the threshold value 𝐻threshold , the 

individual will be accepted and added to the initial 

population list, else the individual is rejected, and a new 

one is generated. This process will be repeated until the 

initial population list reaches the required size 𝑃𝑠𝑖𝑧𝑒 . 

Algorithm 1 presents the pseudo-code of the proposed 

diversity-guided initialization (DGI) algorithm. 
Algorithm 1: the proposed DGI algorithm 

Input:  

 𝑃size: population size 

 N: Number of fog-cloud nodes 

 M: Individual length (Number of tasks) 

 𝐻threshold: Hamming distance threshold  

Output:  

 pop: Initial population list of size 𝑃size 

1. pop= new list // list to store initial population 

2. 𝐼1= Generate a Random Individual with length M  

3. pop. add (Ind1) 
4.  set j=2 

5. While ( 𝑗 ≤ 𝑃size ) do 

6.  
𝐼new= Generate a random individual with length M 
K=J; 

7.  Calculate the Average Hamming Distance (AHD) as  

8.  AHD( 𝐼new) =
1

𝐾
∑𝑘=1
𝐾  HD(𝐼new, 𝐼𝑘 )  

9.  HD(𝐼𝑛𝑒𝑤 , 𝐼𝑘) =
 ∑𝑗=1
𝑀 𝐷𝑗

𝑀
  

10.  If (AHD >𝐻threshold) do 

11.   pop. add (Indnew) 

12.   j=j+1 

13.  End if 

14. End while 

3) Fitness function  
Individuals are evaluated using the fitness function; the 

fitness value quantifies the quality of the solution that the 
individual expresses and also shows its impact on the 
population. In the proposed work, the fitness value is 
calculated by incorporating the utility function of MCS 
tasks in the non-cooperative game model as an 
optimization objective in the total fitness function. The 
utility function aims to manage the interactions and 
mitigate the selfish behavior of the MCS participants. It is 
calculated as a summation of the utilities of all players 
(tasks) as in Eq. (11). This utility should be maximized to 
benefit both MCS participants by maximizing their profits, 
and the fog-cloud system by minimizing the total 
execution time and cost. On the other hand, the second 
objective included in the total fitness function is makespn. 
This objective should be minimized to optimize the fog-
cloud system performance in terms of total execution time. 
To maintain these two conflicting objectives, the total 
fitness function 𝐹total  is introduced to be a maximizing 
function for the two objectives as  

𝐹total = 𝑤
min−makespan

makespan(I)
+ (1 − 𝑤) 

𝑈𝑀(𝑆)

max{ 𝑈𝑀(𝑆)}
    (15) 

where the min −makespan  represent the minimum 

makespan obtained across all individuals (solutions) in the 

current population, and makespan(I)  refers to the 

makespan of the current individual. Also, max{ 𝑈𝑀(𝑆)} 
refers to the maximum utility obtained from all individuals, 

while 𝑈𝑀(𝑆) represent the utility function of the current 

solution. 𝑤 represent a coefficient to balance the influence 

of the fitness function and the utility function. This weight 

determines the relative importance of the two functions. It 

should be a value between 0 and 1, The value w coefficient 

is tested under different conditions in the simulation, and 

selected to be 0.5. 

4) Population sorting and grouping 

Exploration and exploitation represent the fundamental 

principles that characterize the capabilities of evolutionary 

algorithms (EAs). To enhance the exploitation and 

exploration of genetic algorithms and to maintain a good 

balance between them, we propose a population sorting 

and grouping strategy. Instead of applying the genetic 



 

operators (selection, crossover, and mutation) to the entire 

population, we divide the population into three equal 

groups based on the fitness of the individuals. This 

grouping strategy allows the genetic operators to be 

performed according to the specific needs of each group, 

thereby improving the exploration of the unseen regions of 

the search space, as well as exploiting the already-found 

promising solutions. The three groups are described as 

follows: 

Elite group: This group contains individuals with the 

highest fitness values. They represent the top-performing 

solutions in the current population.  

Moderate group: The Moderate group consists of 

individuals with moderate fitness levels. These individuals 

introduce potential solution but may benefit from 

increased genetic diversity to explore new solution spaces 

Diversity group: The diversity group comprises 

individuals with lower fitness values. These individuals 

may hold a high rate of unexplored regions of the search 

space. Fig. 4 explains the process of sorting and grouping 

the population. 

 
Fig. 4. Population sorting and grouping. 

5) Selection 

The selection of parents in a genetic algorithm is a 

critical step that governs the genetic diversity and 

evolutionary progress of the genetic algorithm. This 

process involves choosing a subset of individuals from the 

population to serve as parents for the subsequent genetic 

operators. During the selection phase of the genetic 

algorithm, individuals are selected based on their fitness 

values. The total fitness function 𝐹total in Eq. (15) is used to 

evaluate the individuals in our approach. The selection 

operator will be performed separately for each group to 

select two parents, the first parent will be selected as the 

individual with the highest fitness in his group, while the 

second parent will be selected randomly from the same 

group. 

6) Crossover operator 

Crossover is the process where two or more parent 

solutions are selected from the population to create one or 

more offspring solutions. These offspring solutions inherit 

genetic material from their parents in a way that mimics 

biological reproduction. The goal of crossover is to explore 

the unseen regions of the search space and produce 

offspring that inherit the best characteristics of their 

parents, ideally leading to improved solutions over time 

[14]. 

The proposed adaptive crossover implements the 

crossover operator within each group. For the elite group, 

a high-exploitation crossover technique and a lower 

crossover rate are chosen to preserve their valuable traits. 

the elite group will use a one-point crossover with a low 

crossover rate. Single-point crossover involves selecting a 

single crossover point (cp) along the chromosome, and 

genes to the right of that point in one parent are swapped 

with the genes to the right of the same point in the other 

parent. This creates two new offspring, each containing a 

combination of genes from both parents.  

The intermediate group will use a two-point crossover 

with a moderate crossover rate to explore a broader 

solution space. Two-point crossover is similar to single-

point crossover, but it involves selecting two crossover 

points (𝑐𝑃1, and 𝑐𝑃2). Genes between the two points in one 

parent are swapped with the corresponding genes between 

the two points in the other parent. This results in two 

offspring with genes exchanged in the segments between 

the two points. 

To encourage exploration within the diversity group, we 

will apply a uniform crossover with a higher crossover rate 

to promote diversity and potentially discover a good 

solution. Uniform crossover is a more flexible crossover 

method. Instead of specifying fixed crossover points, it 

randomly selects genes from both parents with equal 

probability (𝑃uni) to decide whether it comes from the first 

or second parent. This method can introduce greater 

diversity into the offspring by allowing for a more random 

mixing of genes. Fig. 5 explains the three types of 

crossover operators used in the proposed approach.  

 
Fig. 5. Crossover operator types. 

The pseudo code of the proposed adaptive crossover 

strategy is described in Algorithm 2. 

Algorithm 2: the proposed Adaptive Crossover algorithm 

Input:  

 Two Parents for each group (Elite, Moderate, and Diversity) 

Output:  
 Two offspring for each group 
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1. P1_ elite =the first individual in elite group 
2. P2_ elite = randomly selected from elite group 

3. r= generated randomly [0–1] 

4. If (r <𝑃𝑐1) do 

5.  
// generate crossover point (𝑐𝑃) 
𝑐𝑃= generate random number between [1–M] 

6.  Single point crossover (P1_ elite, P2_ elite, 𝑐𝑃 ) 

7. End if 

8. P1_ moderate =the first individual in moderate group 

9. P2_ moderate = randomly selected from moderate group 

10. If (r < 𝑃𝑐2) do 

11.  
// generate crossover points (𝑐𝑃1 and 𝑐𝑃2) 
𝑐𝑃1= generate randomly as: 1 ≤ 𝑐𝑃1 <  𝑀 

12.  𝑐𝑃2= generate randomly as: 𝑐𝑃1 < 𝑐𝑃2 ≤ 𝑀 

13.  
two-point crossover (P1_ moderate, P2_ moderate, 𝑐𝑃1, 
𝑐𝑃2) 

14. End if 

15. P1_ diversity =the first individual in diversity group 

16. P2_ diversity= randomly selected from diversity group 

17. If (r < 𝑃c3) do 

18.  𝑃uni = 0.5  // probability of exchanging positions 

19.  uniform crossover (P1_ diversity, P2_ diversity, 𝑃uni) 

20. End if 

7) Mutation operator 
Mutation in GAs is considered the key operator that 

increases the population diversity and enables the 
exploration of promising areas in the search space. This 
operator is applied to the offspring of the crossover 
operator with a probability called the mutation (𝑃𝑚). In the 
proposed work, a multi-point flip mutation is performed on 
each offspring. The multi-point flip mutation is similar to 
the bit-flip mutation except that it works on integer 
numbers. Each gene will be mutated if the generated 
random number is less than 𝑃𝑚 , in this way, the tasks 
chosen are assigned to be processed on another node. Fig. 
6 explains the multi-point flip mutation. 

 
Fig. 6. Multi-point flip mutation. 

8) Overall model of the proposed GTGA 

The flowchart of the proposed GTGA approach is 

explained in Fig. 7. As shown in the flowchart, first the 

GTGA initializes the first population using the diversity-

guided initialization method. Subsequently, the fitness 

value of each individual within the population is assessed, 

these individuals are then categorized into three different 

groups based on their fitness levels. After that, GTGA 

evolves the population by performing the proposed 

adaptive crossover and the multi-point flip mutation. 

Following this evolution, the newly generated offspring 

will be evaluated and replace their parents if they exhibit 

superior fitness values. This iterative process continues 

until a specified number of iterations (Imax) is reached. In 

the final iteration, the algorithm selects the best individual 

from the population as the solution to the task-scheduling 

game.  

 
Fig. 7. The proposed GTGA approach flowchart. 

The pseudo-code of the proposed GTGA approach is 

outlined in Algorithm 3. 

Algorithm 3: the proposed   GTGA algorithm 

Input:  

 T: set of MCS tasks 

 
V: set of fog-cloud nodes 

Imax : Maximum number of Iteration 

Output:  
 Best mapping of T on V 

1 elite-list =new list, moderate-list =new list 

diversity-list = new list, k=1 

2 pop= DGI algorithm (𝑃size, Hthreshold ,𝑁,𝑀), 

3 Evaluate the fitness of each individual according to (15) 

4 𝐹total = 𝑤
min−makespan

makespan(𝐼)
+ (1 −𝑤) 

𝑈𝑀(𝑆)

max{ 𝑈𝑀(𝑆)}
    

5 While (k ≤ Imax) do 

6  
//Sort individuals ascendingly according to their fitness 

pop. sort () 

7  For i=1 to (𝑃size /3) − 1 do 

8   elite-list. Add (Ind𝑖 ) 

Initial Population generation using DGI algorithm     

(Algorithm 1)

Fitness Evaluation of Individuals according to:

𝐹     = 𝑤
min−makespan

makespan(I)
+ (1− 𝑤) 

𝑈𝑀(𝑆)

max{ 𝑈𝑀(𝑆)}

Population Sorting and Grouping

Parents Selection  (Two parents per each group)

Crossover using Adaptive Crossover Algorithm

(Algorithm 2) 

Mutation – Multi-Point Flip Mutation

Offspring evaluation and Replacement

Start

Max 

Iterations 

reached?

End

Final population with the best Schedule

yes

no



 

9  End for  

10  For i=(𝑃size /3) to (2𝑃size /3) − 1  do 

11   moderate-list. Add (Ind𝑖 ) 
12  End for  

13  For i= (2𝑃size /3) to  𝑃size  do 

14   diversity-list. Add (Ind𝑖 ) 
15  End for  

16  Parents selections (two parents per each group) 
17  Adaptive crossover using algorithm 2 

18  Multi-point flip mutation (offspring) 

19  Evaluate offspring finesse according to (15) 

20  If (offspring fitness > parents’ fitness) do 

21  Replace parents with offspring 

22  End if k=k+1 

23 End while 

24 
Final population (with individual that represent best schedule 

of T on V) 

D. Evaluation Metrics Modeling 

To evaluate the proposed approach, five evaluation 

metrics are employed. They are makespan, total system 

cost, throughput, energy consumption, and degree of 

imbalance. 

The term “makespan” represents the maximum duration 

consumed to complete a given set of tasks. Many factors 

can affect the makespan such as task size, length, resource 

availability, system load, and the algorithms applied for 

task scheduling. Reducing the makespan is essential for 

enhancing resource usage and improving the performance 

of the fog-cloud system. Mathematically, makespan [28, 

29] is formulated as 

makespan = max(ET𝑣𝑖)  ∀ 𝑖 ∈ 1,2,3, …𝑛 (16) 

In this context, 𝐸𝑇𝑣𝑖  denotes the total execution time 

taken for all tasks allocated to the ith node and is calculated 

as 

ETvi = ∑  𝑚
𝑗=1 ET𝑗,𝑖 × 𝐴𝑖,𝑗               (17) 

where 𝐴𝑖,𝑗 is a Boolean variable, is set to be 1 when a task 

Tj is scheduled on the node 𝑉𝑖.  
The second evaluation parameter utilized for our study 

is throughput, denoting the total tasks completed within a 

specified makespan, and mathematically formulated as [30] 

Throughput =
∑𝐴𝑖,𝑗

makespan
                   (18) 

The next evaluation metric is the total system cost which 

represents the summation of the costs of all tasks. Where, 

the cost of a given task compromises the processing cost, 

bandwidth usage cost, and memory usage cost. The total 

system cost is calculated as [23] 

Total system Cost = ∑ Cost𝑗
𝑀
𝑗=1            (19) 

Another evaluation metric used in the experiments is 

energy consumption. the energy consumption of each node 

depends on two main factors: its state mode (idle or active) 

and the time consumed in each state. The power 

consumption of node Vi in an active state 𝑃𝑖
active  is 

calculated as 

𝑃𝑖
active = 𝛶 ×MIPS𝑖

2                 (20) 

where 𝛶 = 10−8, the power consumption of the node Vi in 

an idle state 𝑃𝑖
idle is calculated as 

𝑃𝑖
idle = 0.6 × 𝑃𝑖

active                   (21) 

The total power consumed by the node Vi is calculated 

as [25] 

Ɛ𝑖 = [ETv𝑖 × 𝑃𝑖
active + (makespan − ETvi) × 𝑃𝑖

idle] ×
 MIPS𝑖                                (22) 

The total energy consumption of the system (all nodes) of 

executing the set M of tasks is obtained as 

 Ɛtot = ∑ Ɛ𝑖
𝑁
𝑖=1                         (23) 

The last evaluation metric is the degree of imbalance. 

Evaluating the balance of workloads among nodes can 

effectively demonstrate the efficiency of the proposed 

algorithm. Therefore, we use the Degree of Imbalance 

metric to evaluate the load balancing, Degree of Imbalance 

(DI) can be calculated as [25] 

DI =
makespan−min𝑖∈𝑁  (ETv𝑖)

∑𝑖=1
|𝑁|
 ETv𝑖/|𝑁|

  (24) 

IV. PERFORMANCE EVALUATION 

This section presents details about the experimental 
environment setup, workload characteristics, results, and 
discussions. 

A. Experimental Setup 

The proposed approach is implemented using the 
CloudSim simulator. The CloudSim is a Java-based 
simulation toolkit that can model and simulate cloud 
computing and data center environments. We extended the 
CloudSim simulator by adding some classes for the 
proposed genetic algorithm and modifying some of the 
existing classes to meet the requirement for simulating the 
integrated fog-cloud environment. The experimental setup 
comprises an Intel Core i7 2.7 GHz CPU, 16.00 GB of 
RAM, and a 512 GB hard drive. The experiments were 
conducted using the Eclipse IDE 2021 R in conjunction 
with CloudSim. The specific configuration properties of 
the simulation experimental environment are detailed in 
Table II. 

TABLE II: SIMULATION ENVIRONMENT PARAMETERS 

Parameter  Value 

Processor Intel Core i7 2.7 GHz 
RAM 16.00 GB Memory 

Operating system Windows 10 

Simulation Environment CloudSim simulator 
IDE Tool Eclipse IDE 

In our implementation, we examined two simulation 

scenarios, each one with different simulation parameters. 

This approach allowed us to evaluate the performance of 

the proposed model using a variety of evaluation metrics. 

1) Scenario 1 

In this experimental scenario, three fog nodes with ten 

cloud nodes are included. Cloud and Fog nodes exhibit 



 

different processing power as well as resource usage costs. 

It was assumed that each node is characterized by its 

individual processing capacity, measured in MIPS 

(Million Instructions Per Second), along with associated 

costs related to CPU, memory, and bandwidth usage. Grid 

Dollars (G$), a simulation currency, is used in the 

simulation environments as a cost unit. The fog-cloud 

system characteristics for this scenario are listed in Table 

III. 

TABLE III: FOG-CLOUD SYSTEM ATTRIBUTES FOR SCENARIO 1 

Parameter  Fog Cloud  Unit 

No. of Nodes 10 3 - 

CPU Rate [500–1500] [3000–5000] MIPS 

Memory cost [0.01–0.03] [0.02–0.05] Grid $ per MB 
Bandwidth cost [0.01–0.02] [0.05–0.1] Grid $ per MB 

CPU usage cost [0.1–0.4] [0.7–1] Grid $ per MB 

The main responsibility of the fog-cloud system is 

executing all MCS tasks. Each task possesses specific 

attributes, including the number of instructions, memory 

requirements, input file size, and output file size. A 

varying number of tasks ranging from 40 to 500 tasks were 

incorporated in this experiment scenario. The task 

attributes are generated randomly in this experiment to 

ensure a diverse range of task sizes and workloads for 

comprehensive analysis. Table IV shows the task attributes 

for Scenario 1. 

TABLE IV: TASK ATTRIBUTES FOR SCENARIO 1 

Parameter  Value Unit 

Task Length  [1–00] 109 MI 

Memory Required [50–200] MB 
Input file size [10–100] MB 

Output file size [10–100] MB 

 

In Scenario 1, the proposed GTGA algorithm is 

evaluated against discrete non-dominated sorting genetic 

algorithm II (DNSGA-II) [23], time-cost aware scheduling 

(TCaS) [20], and BLA [31]. The superiority of the 

proposed methods over other methods is presented in the 

next subsection. Table V shows the parameter settings of 

three evolutionary algorithms for Scenario 1. 

TABLE V: PARAMETERS SETTING FOR SCENARIO 1 

Parameter  GTGA TCaS DNSGA-II BLA 

Running times 30 30 30 30 

Population Size 100 100 100 100 

Crossover rates 

Pc1=0.4, 

Pc2=0.7, 

Pc3=0.9 

0.9 1 0.9 

Mutation Rates 0.01 0.01 0.01 0.01 

Number of 

Generations 
500 500 500 500 

 

2) Scenario 2 

In this experimental scenario, the fog-cloud broker 

receives multiple job requests, each job comprising a 

variable number of independent tasks that can be 

processed on different fog and/or cloud nodes. The number 

of tasks within each job is randomly chosen, ranging from 

1 to 10, and the length of each independent task is chosen 

randomly within the 500 to 5000 million instructions (MI) 

range. Table VI shows the task parameters for Scenario 2. 

TABLE VI: TASK ATTRIBUTES FOR SCENARIO 2 

Parameter  Value Unit 

Number of tasks per job [1–10] - 

Task length [500–5000] MI 
Input file size [0.5–5] MB 

Output file size [0.1–1] MB 

Job deadline [1–10] Second 

 

The number of jobs is selected to be 5, 10, 15, 20 and 

25. It’s important to note that the number of available fog 

and cloud nodes remains constant throughout this 

experimental scenario, with 30 fog nodes and 10 cloud 

nodes. This experiment investigates the impact of different 

numbers of jobs and tasks on the system’s performance. 

Table VII shows the fog and cloud node attributes for this 

experiment scenario. 

TABLE VII: FOG-CLOUD SYSTEM ATTRIBUTES FOR SCENARIO 2 

Parameter  Fog Cloud  Unit 

No. of nodes 30 10 - 
CPU rate [1000–4000] [5000–20000] MIPS 

The proposed GTGA algorithm is compared against the 

Grasshopper Optimization Algorithm (GOA) [25], Grey 

Wolf Optimization (GWO) [25], MFO [32], and GA [22] 

The simulation is conducted iteratively, repeated 10 times, 

with 500 iterations for each run. All algorithms employ a 

population size of 200. In the case of the Genetic 

Algorithm (GA), the crossover rate is set to 0.9, and the 

mutation rate is configured at 0.01. In our GTGA 

algorithm, the crossover rates are set to be 𝑃𝑐1 = 0.4 , 

𝑃𝑐2 = 0.4, 𝑃𝑐3 = 0.4, and the mutation rate 𝑃𝑚 = 0.01. 

B. Simulation Results 

This section introduces the experimental results of the 

proposed GTGA algorithm for the two scenarios. GTGA 

has been evaluated and compared using various inertial 

parameters. The main evaluation metrics conducted in the 

simulation are Makespan, throughput, total cost, power 

consumption, and degree of imbalance. The performance 

of the GTGA task scheduling approach is measured using 

Eqs. (16), (18), (19), (23), and (24), respectively.  

1) Experimental results for Scenario 1 
The proposed method will be evaluated in terms of 

makespan, total cost, and throughput in this scenario. Fig. 
8 clearly shows that our method performs better than 
DNSGA-II, TCaS, and BLA. It can be illustrated that, on 
average, the GTGA approach achieves a reduction in 
makespan of 8.1%, 27.3%, and 46.6% compared to 
DNSGA-II, TCaS, and BLA methods, respectively, when 
scheduling 40 to 500 tasks. This signifies the effectiveness 
of our algorithm in seeking the optimal schedule by 
integrating the concept of non-cooperative game theory 
with the genetic algorithm. 

The results in Fig. 9 demonstrate that GTGA has the 
lowest system cost in all cases of Scenario 1, while the 
highest cost is for the tasks executed with the TCaS. 
GTGA can save a total system cost of 4.91%, 41.73%, and 
40% as compared to DNSGA-II, TCaS, and BLA, 
respectively. The proposed method integrates the utility 
function of MCS tasks into the overall fitness function of 



 

the system. This ensures that the execution cost of tasks is 
minimized by utilizing nodes that offer the lowest cost. 

 
Fig. 8. Comparison of makespan for Scenario 1. 

 
Fig. 9. Total cost comparison of Scenario 1. 

 
Fig. 10. Throughput comparison of Scenario 1. 

Fig. 10 illustrates the throughput performance for 
Scenario 1. It can be observed that the average throughput 
is enhanced by 9%, 33.2%, and 87.4 as compared with 
DNSGA-II, TCaS, and BLA methods respectively. 

2) Experimental results for Scenario 2 
This section introduces the experimental results of 

implementing Scenario 2. For this scenario, we evaluate 
the performance of the proposed GTGA approach in terms 
of makespan, energy Consumption, and degree of 
imbalance. The results are compared with GOA, GWO, 
MFO, and GA. 

Fig. 11 shows the makespan comparison results for 
Scenario 2. The results indicate that the GTGA method 
performed better than GOA, GWO, MFO, and GA with a 
reduction in makespan of 9.1%, 27.06%, 61.2%, and 36.87% 
respectively. 

 
Fig. 11. Comparison of makespan for Scenario 2. 

The results of energy consumption for Scenario 2 are 

evaluated and compared with the other algorithms. In this 

context, the proposed GTGA algorithm exhibits superior 

performance when compared with GOA, GWO, MFO, and 

GA by reducing the total energy consumption by 11.24%, 

24.56%, 58.20%, and 36.75% respectively. Fig. 12 Shows 

the power consumption results for Scenario 2.  

 
Fig. 12. Energy consumption comparison for Scenario 2. 

 
Fig. 13. Degree of imbalance comparison for Scenario 2. 
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Comparing the results of the degree of imbalance in a 

computational system is essential for assessing the 

effectiveness of various algorithms in achieving load 

distribution and resource utilization. In this context, the 

proposed GTGA algorithm demonstrates its superiority 

when compared with GOA, GWO, MFO, and GA by 

enhancing the DI by 8.83%, 15.90%, 44.29%, and 15.87% 

respectively as shown in Fig. 13.  

V. CONCLUSION 

This paper proposed a game theoretical model for 

scheduling MCS tasks in the fog-cloud system. The 

proposed GTGA approach modeled the interaction 

between the self-interested MCS participants as a non-

cooperative game aiming to mitigate their selfishness. A 

modified genetic algorithm has been utilized to solve the 

proposed scheduling game model. In the proposed 

approach, three main enhancements for GA are introduced 

to improve the exploitation and exploration abilities of the 

GA and to maintain a good balance between them. First, 

the initial population is generated in a way that helps to 

explore the whole search space to avoid falling in the local 

optima during the first iterations. Then, the population is 

partitioned into three groups, namely, elite, moderate, and 

diversity, each group exhibits different characteristics 

regarding exploration and exploitation. Finally, an 

adaptive crossover operator is introduced in which 

different crossover types with different crossover rates are 

introduced to meet the specific requirements of each group. 

The proposed scheduling model benefits both the fog-

cloud nodes, and the MCS participants, and maximizes the 

overall performance of the system. The simulation results 

have shown (i) Increased throughput and decreased 

makespan values (ii) reduced total system cost for 

processing the MCS tasks (iii) decreased total energy 

consumption on the fog-cloud nodes. The proposed 

approach is observed to have better performance as 

compared to the state of art algorithms. 
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