

Task Scheduling Optimization in Cloud-Fog-

MCS Environment Using Genetic Algorithm and

Game Theory

Ahmed R. Kadhim* and Furkan Rabee

Computer Science Department, Faculty of Computer Science and Mathematics, University of Kufa, Najaf, Iraq

Email: ahmedr.alkhafajee@uokufa.edu.iq (A.R.K.), furqan.rabee@uokufa.edu.iq (F.R.)

Abstract—Fog-cloud computing is a promising platform for

processing Mobile Crowdsensing (MCS) tasks that come with

different requirements. A fog environment is more suitable

for processing time-sensitive tasks due to its proximity to the

MCS layer. On the other hand. the cloud environment

provides powerful resources to handle large tasks. However,

due to the heterogeneity of the computing nodes, scheduling

MCS tasks in a fog-cloud environment is a challenging issue.

This paper presents a non-cooperative game theoretical

model for the task scheduling problem of MCS tasks in the

fog-cloud environment. Then, the paper presents an

improved genetic algorithm to efficiently solve the problem

of task scheduling game model with main enhancements

including a new strategy to generate a diverse initial

population, incorporating the utility function of the game

theoretical model with system fitness function, and finally,

the paper introduces a new strategy for population sorting

and grouping with applying adaptive crossover operator to

meet the specific needs of each group. This improves the

exploration of the unseen regions of the search space, as well

as exploiting the already-found promising solutions,

ultimately leading to a faster convergence toward the optimal

solution. The experimental results demonstrate that the

proposed approach has better performance in terms of

reducing the makespan by 26%, decreasing the energy

consumption by 32.4%, decreasing total system cost by 28%,

and decreasing the degree of imbalance by 21.53% as

compared with other scheduling approaches such as Discrete

Non-dominated Sorting Genetic Algorithm II (DNSGA-II),

Grasshopper Optimization Algorithm (GOA), Grey Wolf

Optimization (GWO, Time-Cost Aware Scheduling (TCaS),

Moth Flame Optimization (MFO), and Bees Life Algorithm

(BLA).

Index Terms—cloud computing, fog computing, genetic

algorithm, Mobile Crowdsensing (MCS), task scheduling,

I. INTRODUCTION

Mobile crowdsensing (MCS) has emerged as a powerful

paradigm for collecting real-world data by leveraging the

pervasive presence of mobile devices, such as smartphones

and wearables [1]. This innovative approach enables the

acquisition of real-time, fine-grained information, making

it a critical component in various applications, including

smart cities, environmental monitoring, healthcare, and

transportation [2–4]. However, as the scale and complexity

of MCS applications grow, and due to the limitation of

MCS devices in terms of power resources and

computational capability, they need to offload their tasks

to external servers for processing. Cloud computing offers

significant computational power and storage capacity to

process data-intensive tasks [5], but it tends to introduce

higher latency due to the distance that data needs to travel

between the MCS devices and the Cloud servers [6]. This

latency can be problematic for real-time applications. On

the other hand, Fog computing is a distributed computing

paradigm, where computational resources and storage are

placed closer to the data sources of MCS devices, typically

at the network edge. Fog computing is beneficial to reduce

latency and improve response time, it is well-suited for

tasks that require low-latency processing [7]. Fog

computing faces limitations in terms of computational

capacity and storage capabilities, that make it not suitable

for processing data-intensive tasks. Hence, there is a need

for an integrated fog-cloud architectural paradigm that

combines the advantages of both fog and cloud

environments.

Fog-cloud computing, an emerging paradigm, merges

the advantages of cloud computing and fog computing to

tackle the challenges arising from the growing demand for

time-sensitive data processing with low latency and

resource-intensive applications [8, 9]. Although integrated

fog-cloud computing systems offer various benefits, it also

presents several challenges. One of the key challenges in

such systems is task scheduling [10, 11]. Task scheduling

in fog-cloud systems involves allocating computational

tasks to appropriate fog nodes or cloud servers, aiming to

optimize the overall system performance. The problem

becomes even more challenging due to the heterogeneity

of resources, varying network conditions, and dynamic

task requirements. Traditional centralized scheduling

approaches, designed for cloud-only environments, may

not be well-suited for fog-cloud scenarios due to the

distributed nature and resource constraints of the fog nodes.

To tackle the task scheduling problem in a fog-cloud

environment, this paper proposes an approach that

combines genetic algorithms and game theory. Genetic

algorithms are well-known optimization techniques

inspired by natural selection and genetics. They can

efficiently explore the solution space and evolve towards

optimal solutions by employing genetic operators such as

Manuscript received November 4, 2023; revised November 30,
2023; accepted December 3, 2023.

*Corresponding author.

game theory

crossover and mutation [12–14]. Game theory, on the other

hand, is a mathematical tool for analyzing and modeling

strategic interactions among rational decision-makers,

often referred to as “players”. It is widely used in various

fields, including economics, political science, biology, and

computer science, to understand and predict how

individuals or entities make decisions in competitive or

cooperative situations [15]. Additionally, the versatility of

game models enables the analysis of task scheduling in

different computing environments efficiently. In task

scheduling problems, game theory can be utilized to model

the interactions between computational tasks and system

resources, thereby assisting in the optimization of task

scheduling [16]. In this paper, the MCS tasks scheduling

problem in fog-cloud computing systems is formulated as

a non-cooperative game to optimize various system

parameters such as makespan, energy consumption of the

nodes, and total system cost. Non-cooperative game is a

branch of game theory that focuses on scenarios where

players, or decision-makers, pursue their objectives

independently, without any formal collaboration.

Additionally, the paper seeks to address the satisfaction of

MCS participants and mitigate the selfishness in terms of

their profit. To tackle the problem, the paper utilizes the

genetic algorithm with some useful modifications to solve

the non-cooperative scheduling game. Integrating genetic

algorithms with non-cooperative game theory concepts for

solving task scheduling problems in the fog-cloud system

can be highly effective. It allows for the optimization of

individual objectives through Genetic Algorithms (GAs)

while considering strategic interactions among players

(MCS participants), resulting in efficient task mapping and

improved performance in fog-cloud environments. The

proposed Game Theory-Based Genetic Algorithm (GTGA)

measures makespan, energy consumption, system cost,

degree of imbalance, and throughput. GTGA simulated

using the CloudSim environment.

The main contributions of this paper are summarized as

follows.

 Model the task scheduling problem for MCS tasks in

the fog-cloud environment as a non-cooperative game.

In the proposed model, the MCS participants

represent the game players, where each player aims to

maximize his profit. The utility function of the game

is modeled mathematically.

 Introduce a modified genetic algorithm with

enhancements in the initial population, fitness

function, and crossover operator to solve the

scheduling game model and find a schedule that

approximates optimality.

 Introduce a new approach for generating the initial

population in the genetic algorithm. This approach

explores the diverse locations of the search space to

avoid falling in the local optima in the first iterations

and to help reach the optimal solution faster.

 Present a new sorting and grouping strategy for the

population intending to enhance both the exploitation

and exploration of the genetic algorithm.

Subsequently, the crossover operator is applied

individually to each group following its specific

requirements.

The remainder of this paper is structured as follows: In

Section II, a review of the existing research in this area is

introduced. The system model, mathematical

representation, the proposed scheduling approach, and the

performance metrics are introduced in Section III. Section

IV provides the experimental outcomes, performance

assessment, and a discussion of the findings. Finally,

Section V concludes the paper.

II. RELATED WORKS

The task scheduling problem is one of the key

challenging issues in fog-cloud systems. Recently, this

problem has attracted significant attention due to its

important role in improving the total execution time, total

cost, and power consumption of such systems. This section

reviews relevant research efforts and then highlights the

main difference between our work and existing studies.

Hoseiny et al. [17] introduced a heuristic algorithm for

fog-cloud computing, called priority-aware genetic

algorithm (PGA). Their algorithm is designed to optimize

a multi-objective function that involves a weighted

combination of several factors, including the overall

computation time, energy consumption, and the

Percentage of Deadline-Satisfied Tasks (PDST). They

consider the diverse requirements of tasks and the

heterogeneity of fog and cloud nodes. Their approach

combines task prioritization and a genetic algorithm to

select the most suitable computing node for each task.

Elaziz et al. [18] presented a task scheduling method for

handling Internet of Things (IoT) requests in a cloud-fog

computing environment. The proposed approach, named

AEOSSA (artificial ecosystem-based optimization with

salp swarm algorithm), is an enhancement of the Artificial

Ecosystem-Based Optimization (AEO) technique. It

incorporates elements from the Salp Swarm Algorithm

(SSA) to enhance its capacity for discovering optimal

solutions. To assess the effectiveness of AEOSSA, the

researchers conducted experiments using various real-

world and synthetic datasets of different sizes.

Wang et al. [19] proposed a novel task scheduling

method, denoted as I-FASC, for scheduling tasks with

different attributes in the fog-cloud environment.

Additionally, an enhanced genetic algorithm, I-FA, is

presented, incorporating a firework explosion radius

detection mechanism. Their proposed approach can help

minimize task processing time and provide better load

balancing for fog devices.

Nguyen et al. [20] focused on addressing the task

scheduling problem within the Bag of Task (BoT)

applications in a fog-cloud computing environment. They

introduced a Time-Cost Aware Scheduling (TCaS)

algorithm aimed at resolving this issue. The primary

objective of the TCaS algorithm is to achieve an optimal

balance between the time it takes to execute the tasks and

the associated monetary costs within the fog-cloud system.

Additionally, this algorithm demonstrates adaptability to

varying user requirements, allowing for customization

based on preferences such as prioritizing based on time or

cost.

Alsamarai et al. [21] introduced a task scheduling

algorithm known as the “bandwidth-deadline algorithm”,

designed to optimize makespan and ensure timely task

completion in a cloud-fog environment. This algorithm

places significant emphasis on task deadlines by

prioritizing tasks with the earliest deadlines and assigning

them to resources capable of completing them in the

shortest time to minimize the makespan. The algorithm

comprises two key components: the first part, named “fog

max–cloud min”, and the second part, which utilizes Ant

Colony Optimization.

The primary focus of [22] is optimizing the scheduling

of IoT requests in a hybrid fog-cloud computing

environment to minimize latency, specifically the round-

trip time (RTT) involved in processing these requests. The

authors employed an integer linear program to solve and

validate the model. Also, to address larger-scale problems,

a modified genetic algorithms (GA) heuristic approach

was developed, allowing for feasible solutions of high

quality within reasonable computational time.

Ali et al. [23] introduced a multi-objective optimization

problem for task scheduling to minimize both makespan

and total costs in a fog-cloud environment. To tackle the

discrete nature of this multi-objective task-scheduling

problem, they presented an optimization model that

employs the Discrete Non-dominated Sorting Genetic

Algorithm II (DNSGA-II). This model also automates the

allocation of tasks to either fog or cloud nodes. The

adaptation of the NSGA-II algorithm involves the

discretization of the crossover and mutation evolutionary

operators, as opposed to using continuous operators that

require significant computational resources and are not

suitable for precise computing node allocation.

Hoseiny et al. [24] designed two algorithms for

scheduling volunteer requests in volunteer computing

systems (VCSs), named min-CCV and min-V. they

formulated the task scheduling problem in fog-cloud

computing as a mixed integer linear programming (MILP)

with the purpose of supporting both QoS for IoT tasks and

low computation and communication costs for the fog-

cloud system. The primary objective of the proposed

algorithms is jointly minimizing the computation,

communication, and delay violation cost for the internet of

things (IoT) requests.

Dabiri et al. [25] introduced a system model designed to

address the job (set of tasks) scheduling problem within

the context of cloud-fog computing. Their primary

objective was to optimize both the energy consumption of

the fog-cloud system and the total deadline violation time

of jobs. Subsequently, the authors proposed two nature-

inspired optimization techniques, namely the Grey Wolf

Optimization (GWO) and the Grasshopper Optimization

Algorithm (GOA), to effectively tackle the job scheduling

problem within the cloud-fog environment.

Due to the complexity of the task scheduling problem

which is considered an NP-hard optimization problem,

most of the researchers used greedy heuristic and

metaheuristic approaches to find near-optimal solutions. In

the literature, some of the researchers employed

metaheuristic algorithms in their works. But none of them

consider the weakness of such algorithms in terms of

exploration and falling in local optima. Also, most of the

literature focus on the optimization of the fog-cloud

system metrics only, they ignore satisfying the user

requirements that aim to improve their profit in term of

cost and reduce the execution time. Moreover, a few

algorithms have considered a scheduling model for MCS

tasks with a given deadline and cost constraints by the Fog-

Cloud system. To address these gaps, this study proposed

a scheduling model that guarantees meeting both the fog-

cloud system and MCS participants’ requirements by

modeling the task scheduling problem as a non-

cooperative game for the self-interested MCS participants.

To solve the scheduling game, the proposed work utilized

the genetic algorithm with some enhancements to help

reach the near-optimal solution (Nash equilibrium point of

the game model) quickly and to avoid falling in local

optima during the searching process.

III. PROBLEM FORMULATION

A. System Architecture

The system architecture comprises three layers called

MCS, fog, and cloud layers. Each layer is composed of

different devices, nodes, and servers, respectively. The

architecture of the MCS-fog-cloud system is illustrated in

Fig. 1.

Fig. 1. Proposed MCS-Fog-Cloud architecture.

The MCS layer serves as the first tier and consists of a

multitude of mobile devices owned by individuals or

participants. These devices are equipped with various

sensors, such as GPS, cameras, and accelerometers,

enabling them to collect and contribute data about the

surrounding environment to the upper (Fog and cloud)

layers. Fog layer represents the second layer and serves as

the intermediate tier between the MCS and Cloud layers.

It comprises fog nodes, which are edge devices located

closer to the end-users or MCS devices. The primary

.

CN-1

.

FN-1 Fog- Cloud Broker

FN-2

CN-2 CN-3 CN-l

P-1

.

.

.

Cloud Layer

Fog Layer

MCS Layer

P-2 P-MP-3

Scheduler

Resource
monitor

Task Manager
FN-k

CN – Cloud Node
FN – Fog Node
P – MCS Participant

objective of this layer is to process data and execute tasks

in proximity to the data source, reducing communication

latency and bandwidth consumption. Fog nodes often have

more computational capabilities than mobile devices,

enabling them to handle more compute-intensive tasks.

The cloud computing layer represents the backend of

the architecture, comprising large-scale data centers and

cloud servers. This layer possesses abundant

computational resources and storage capacities, making it

suitable for handling resource-intensive and data-intensive

tasks. The cloud layer serves as a centralized resource pool

that can process tasks from both the MCS and Fog layers.

Fog broker consists of three main components: task

manager, task scheduler, and resource monitor. Each

component comes with different characteristics and

functions, the function of the first component includes

several operations. In the initial phase, it receives sensing

requests from MCS data requesters, who may be

individuals or organizations seeking to observe specific

phenomena. Subsequently, the task manager dispatches

the sensing task along with its description to the MCS

participants. Ultimately, the task manager collects the

completed tasks from the MCS participants and evaluates

the sensed data based on criteria such as deadline, size, and

duration. The resource monitor component is responsible

for monitoring and evaluating the fog and cloud nodes and

periodically provides the task scheduler with a report about

the system resource’s status. The task scheduler represents

the principal component of the fog-cloud broker. This

component acts as a decision-making entity responsible

for intelligently distributing tasks to available fog nodes or

cloud resources based on the information and data received

from the task manager and resource monitor components.

Fig. 2 shows the block diagram of task scheduling

operations in the MCS-Fog-cloud system. Overall, In the

ecosystem of mobile crowdsensing (MCS), the data flow

between data requesters and MCS participants involves a

dynamic exchange orchestrated by the Mobile

Crowdsensing platform. Data requesters initiate the

process by submitting requests to the MCS platform. The

MCS platform acts as an intermediary, disseminating these

requests to a pool of available MCS participants, who are

individuals with mobile devices equipped to collect

relevant data. The platform facilitates communication and

coordination between data requesters and workers,

ensuring a streamlined flow of information. Upon

receiving tasks, MCS workers utilize their mobile devices

to capture and transmit the requested data back to the

platform. The platform schedules the data to the fog nodes

and cloud servers for more processing before delivering it

to the original data requester.

Fig. 2. Block diagram of task scheduling operations for MCS in a fog-cloud system.

.
Cloud

Nodes

4. Submit Tasks

.

.

Fog – Cloud Broker
(Task scheduler)

MCS Platform

Fog Nodes

Data Requesters

Customers / Organizations

Data Collectors

MCS Participants

1. Request Sensing
Tasks with Budget

2. Sensing Task with
Description

3. Sensed Data
(Tasks)

4. Submit Tasks

5. Results

5. Results

7. Sensing Results

6
.

b
id

B. Mathematical Formulation of the Proposed Model

In the MCS-fog-cloud architecture, first of all, the

sensing tasks are released with their descriptions to the

MCS participants through the MCS sensing platform. The

descriptions include constraints on time to complete the

sensing task, task length, and file size. Also, the

description includes a price offer for MCS participants to

complete the sensing task. In order to ensure the validity

of the sensing data, the task manager needs to set an

effective time (D) for the MCS participants to complete the

sensing task, this helps to overcome the problems that

come with the time-sensitive sensing tasks. Also, the task

manager specifies the allowed task length which should

fall in the range [ℓmin, ℓmax], the last constraint is the file

size of the task which is preferred to fall in the range

[𝑠min, 𝑠max]. Maintaining the task length, and size within

specified ranges leads to controlling and optimizing the

fog-cloud system performance in terms of execution time

and cost. In addition, it benefits the MCS participants by

reducing sensing time and energy consumption. Based on

the response of the MCS participants to these constraints,

the fog-cloud platform presents a price offer P to the

participants. P represents the expected profit for MCS

users to participate and accomplish the sensing task and is

denoted as

𝑃min < 𝑃 < 𝑃max (1)

where Pmin represents a fixed cost to participating in the
sensing platform and Pmax represents the maximum price
values that can be paid to the MCS participants and should
satisfy the constraints:

𝑃max < 𝐵platform/M (2)

where 𝐵platform represents the total budget of the sensing

platform gained from the task requesters (customers or

organizations). M represents the number of workers

employed to sense and collect data. The fog-cloud broker

receives a set of tasks (T) from the MCS participants, 𝑇 =
{𝑇1, 𝑇2, … . , 𝑇𝑀}, with each task defined by three primary

parameters 𝑇𝑗 = (ℓ𝑗 , ḏ𝑗 , 𝑠𝑗). In this context, ℓ𝑗 indicate the

task length, ḏj represents the time taken to accomplish and

submit the sensing task, and sj is the task size in megabytes.

Also, consider the fog-cloud system has a set (V) of N

nodes 𝑉 = {𝑉1, 𝑉2, … , 𝑉𝑁} where V is the combination of a

set of fog nodes 𝐹 = {𝐹1, 𝐹2, … , 𝐹𝑘}, and set of cloud nodes

(virtual machines) in cloud layer 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑙}, 𝑉 =
𝐹 ∪ 𝐶. Each node within 𝑉 is characterized by its available

CPU Million instructions per second (MIPS), memory size,

and storage, 𝑉𝑖 = (MIPS𝑖 , MEM𝑖 , ST𝑖). Table I shows the

notation used with the formulation of the proposed model.

The system will be modeled as a non-cooperative game

with complete information, where each task acts as a

player in the game.

TABLE I: USED NOTATION

Notation Description
T Set of Tasks

F, C Set of Fog layer nodes, set of cloud layer nodes

V Set of Fog-Cloud system nodes

M Number of Tasks in T

N Number of fog-cloud nodes in V
Tj The jth task in the set T

Vi The 𝑖𝑡ℎ node in fog-cloud system
ℓj Length of Tj

ḏj Time consumed to complete the sensing task Tj

D Time allowed to complete the sensing task

MIPSi Million Instructions per Second of node Vi

MEMi The available memory size of the node Vi

STi Available Storage of node Vi

P Price offer to participate in the sensing task

uj(s) The utility function of the player Tj

Ej The Effort level of the MCS participant

Costj,i Total cost of executing Tj on Vi

ETj,i Execution Time of Tj on Vi

ETvi Total execution time of node Vi

𝐶𝑖
cpu

 Computing cost of node Vi

𝐶𝑖
ram Cost of memory usage of node Vi

𝐶𝑖
bw Cost of bandwidth usage of node Vi

RB𝑗, RM𝑗 Required memory, the bandwidth of task Tj

HD Hamming Distance

Ɛi Power consumption of node Vi

In this framework, each player (MCS participant task)

aims to maximize their own utility, making strategic
choices based on their private information and preferences.
The players make the decision by choosing a suitable
strategy (selection of a suitable node for processing) to
independently archive their goals. The game model is
expressed as

G = (M, S, U) (3)

In this context, M represents the total number of players

participating in the game, while S refers to the collective

set of strategies chosen by all the players, 𝑆 =
{𝑠1, … , 𝑠𝑚−1, 𝑠𝑚} , and U denotes the payoff, 𝑈 =
{𝑢1(𝑠), … , 𝑢m(𝑠)}, where 𝑢𝑗(𝑠) denotes the payoff of the

player Tj. The description of the game components is

explained as follows:

Players: In the task scheduling game, the players

represent M tasks received from MCS participants

(assuming that the tasks are independent and each task

comes from a different MCS participant).

Strategies: Each task should be allocated to a suitable

fog or cloud node in order to optimize the scheduling

objectives, the number of possible strategies for the player

Tj represent the set of fog-cloud nodes (V) available to

execute their tasks, where sj denotes the strategy profile of

the player Tj.

Payoffs: In the scheduling game, each MCS participant

tries to schedule their task to the node that maximizes his

profit in terms of sensing cost, and execution time by

selecting the best scheduling strategy. Therefore, the

payoff of the player Tj is defined to be the maximizing

function of the sensing price, given as

𝑢𝑗(𝑠) = 𝐸𝑗𝑃max − Cost𝑖,𝑗 (4)

where Ej represents an Efficiency factor, denoting the

effort level of the MCS participant and reflecting the

quality of sensing. It falls within the range of 0 to 1, where

higher values indicate that the task sensing and submitting

was done within the given deadline, and the length of the

task is within the specified length by the sensing platform.

This higher efficiency refers to the MCS participant’s

commitment to the constraints given by the sensing

platform, in turn, contributes to maximizing the system

performance and the profit of the MCS participant. The

efficiency factor is calculated as

𝐸𝑗 = 𝛼(1 −
ḏ𝑗

𝐷
) + 𝛽

ℓ𝑗

ℓmax
, where 𝛼 + 𝛽 = 1 (5)

The values of 𝛼, and 𝛽 are selected to be 0.7, and 0.3

respectively, this indicates that prioritizing the time

constraint over the task length. This prioritization aims to

ensure that sensing and submitting the task to the fog-cloud

broker will be done within the given deadline by the

sensing platform. The second factor that affects the profit

of the MCS participant is the total cost of executing his

task on a specific fog or cloud node Vi. The total execution

cost (Cost𝑖,𝑗) includes CPU execution cost, memory usage

cost, and bandwidth usage cost denoted as Cost 𝑖,𝑗
cpu

,

Cost 𝑖,𝑗
ram, and Cost 𝑖,𝑗

bw, defined respectively as follows:

Cost𝑖,𝑗 = (Cost𝑖,𝑗
cpu

+ Cost𝑖,𝑗
ram + Cost𝑖,𝑗

bw) (6)

Cost𝑖,𝑗
cpu

= ET𝑗,𝑖 × 𝐶𝑖
cpu

 (7)

Cost𝑖,𝑗
ram = RB𝑗 × 𝐶𝑖

ram (8)

Cost𝑖,𝑗
bw = RM𝑗 × 𝐶𝑖

bw (9)

Minimizing the total execution cost of the task Tj led to

maximizing its final profit. In this context, RB𝑗 represents

the required bandwidth to upload and download the task

files, RM𝑗 the required memory, and ET𝑗,𝑖 refers to the

execution time of the task Tj on the node Vi which is

calculated as

ET𝑗,𝑖 =
ℓ𝑗

MIPS𝑖
 (10)

The payoff of playing M players is defined to be an

increasing function of the profit of all MCS tasks. It is

noticeable that the profit of each player is affected not only

by its own scheduling strategy but also by the strategic

choices of other players, the total payoff function

calculated as

𝑈𝑀(𝑆) = ∑ 𝑢𝑗(𝑠)𝑗 (11)

Nash equilibrium represents one of the principal

solution concepts for game theory in general and

noncooperative games in particular. Nash equilibrium is a

very important concept and is a widely used solution in the

N-person noncooperative game [26]. In the Nash

equilibrium (NE), the strategy of each player is considered

optimal when it allows the player to attain their maximum

payoff while taking into account the strategies adopted by

the other players. Therefore, a NE point is represented as

𝑆∗ = (𝑠1
∗, 𝑠2

∗, … , 𝑠𝑚
∗), where a strategy profile 𝑆∗ ∈ 𝑆 is a

Nash Equilibrium in a strategic form game G if and only if

the condition in equation (12) is satisfied, ∀𝑗 ∈ 𝑀 and

∀𝑠𝑗 ∈ 𝑆𝑗.

𝑢𝑗(𝑠𝑗
∗, 𝑠−𝑗

∗) ≥ 𝑢𝑗(𝑠𝑗 , 𝑠−𝑗
∗) (12)

where 𝑠−𝑗
∗ represent the strategies of all other players

except player Tj. In this game, no player (task) can

maximize his profit by changing it is own strategy only.

According to the definition above, scheduling tasks are

translated into searching the NE of the task scheduling

game. This paper employs the GA to search the NE point

of the proposed non-cooperative scheduling game. The

mechanisms of the proposed GA will be described in detail

in the next section.

C. Game Theory Based Genetic Algorithm

Given the NP-hard nature of the game model, a Genetic
Algorithm is employed to search the NE point of this game.
genetic algorithms (GAs) are search and optimization
techniques inspired by the process of natural selection and
evolution. It is commonly used to solve complex problems

where traditional methods may be less effective. Genetic
algorithms work by evolving a population of potential
solutions to a problem over several generations. GAs are
particularly suitable for solving optimization problems,

which makes them a good choice for solving task
scheduling problems in fog-cloud systems.

Based on the framework of the basic GA, three
improvements are incorporated into the GA, including
presenting a new way for initializing the first population to

ensure distribution of the initial population across the
whole search space and avoid falling in the local optima in
the first iterations. The next improvement is sorting the
population according to individuals’ finesses and

partitioning it into three equal (elite, moderate, and
diversity) groups. Then performing the genetic crossover
operator within each group with different crossover rates
and types. The last improvement is incorporating the utility

function of the game theory model with the fitness function
of the genetic algorithm, this ensures optimizing the fog-
cloud system performance and mitigates the selfishness of
the MCS participants. The following subsections describe
the representation of the GA to meet the specification of

our problem, and then introduce an algorithm to generate
the initial population. This is followed by presenting and
discussing the selection, crossover, and mutation operators
used in the proposed GTGA algorithm.

1) Encoding
GA has chromosomes, and it is essential to encode them

effectively to represent the task scheduling problem. There
are many encoding techniques for GA to represent task
scheduling problems. Our work uses discrete encoding,
also known as integer number encoding. Discrete encoding
makes a vector of 1×M dimension, where M is the number
of genes (tasks in our work). It shows that for each gene
there is a corresponding value representing the node
number. Genes have only one allele whose range is the set
of fog-cloud nodes V.

As an illustrative example, suppose there are six tasks
that can be denoted as 𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5, and 𝑇6. Tasks have

to be mapped to three nodes represented as 𝑉1, 𝑉, and 𝑉3.

Let the chromosome (Individual) be 𝐼 = 3, 2, 3, 1, 2, 2 .
This implies that the 𝑇1 is assigned to 𝑉3 . Similarly,

𝑇2, 𝑇3, 𝑇4, 𝑇5 and 𝑇6 are mapped to 𝑉2, 𝑉3, 𝑉1, 𝑉2 and 𝑉2 ,
respectively. As there are three nodes, there are three pools
of tasks. Here in the mapping defined for chromosome
𝐼, 𝑉1 gets only one task, so the pools are 𝑉1 = {𝑇4}, 𝑉2 =
{𝑇2, 𝑇5, 𝑇6} and 𝑉3 = {𝑇1, 𝑇3}. The agenda of the proposed
GTGA is to find a chromosome (solution) representing the

best schedule to meet the objectives of better makespan
and total execution time. Fig. 3 shows the encoding and
decoding process for the integer representation of the
chromosomes.

Fig. 3. Integer representation of the individuals.

2) Initial population
To ensure a uniform distribution of the initial population

in the solution space, mitigate the centralized distribution
in the local region of the search space, and enhance the
diversity of the initial population, the first population can
be initialized by incorporating the hamming distance
technique. Hamming distance is a metric used to measure
the difference between two sets of equal length, typically
binary sets. However, it can also be applied to a set of
integers. In the context of integers, hamming distance is
used to quantify how many positions in two integer
sequences differ. The hamming distance value falls in the
range [0–1] by dividing the number of differences by the
individual length. Hamming distance (HD) between two
individuals can be calculated as [27].

HD(𝐼1, 𝐼2) =
 ∑𝑗=1
𝑀 𝐷𝑗

𝑀
 (13)

where 𝐷𝑗 is a boolean variable, represented as

𝐷𝑗 = {
1 Genes on 𝑗th position is different

0 otherwise

For the proposed work, the first chromosome in the

initial population will be generated randomly, then a

threshold value 𝐻threshold for the allowed difference is

specified. Then, the remaining chromosomes will be

generated randomly by ensuring that the average hamming

distance of each newly generated chromosome with all

individuals in the existing population is greater than the

threshold value 𝐻threshold. The average hamming distance

(AHD) is calculated as

AHD(𝐼new) =
1

𝐾
∑𝑘=1
𝐾  HD(𝐼new, 𝐼𝑘) (14)

where K represents the current count of the individuals in

the population during the initialization process. If the AHD

value is greater than the threshold value 𝐻threshold , the

individual will be accepted and added to the initial

population list, else the individual is rejected, and a new

one is generated. This process will be repeated until the

initial population list reaches the required size 𝑃𝑠𝑖𝑧𝑒 .

Algorithm 1 presents the pseudo-code of the proposed

diversity-guided initialization (DGI) algorithm.
Algorithm 1: the proposed DGI algorithm

Input:

 𝑃size: population size

 N: Number of fog-cloud nodes

 M: Individual length (Number of tasks)

 𝐻threshold: Hamming distance threshold

Output:

 pop: Initial population list of size 𝑃size

1. pop= new list // list to store initial population

2. 𝐼1= Generate a Random Individual with length M

3. pop. add (Ind1)
4. set j=2

5. While (𝑗 ≤ 𝑃size) do

6.
𝐼new= Generate a random individual with length M
K=J;

7. Calculate the Average Hamming Distance (AHD) as

8. AHD(𝐼new) =
1

𝐾
∑𝑘=1
𝐾  HD(𝐼new, 𝐼𝑘)

9. HD(𝐼𝑛𝑒𝑤 , 𝐼𝑘) =
 ∑𝑗=1
𝑀 𝐷𝑗

𝑀

10. If (AHD >𝐻threshold) do

11. pop. add (Indnew)

12. j=j+1

13. End if

14. End while

3) Fitness function
Individuals are evaluated using the fitness function; the

fitness value quantifies the quality of the solution that the
individual expresses and also shows its impact on the
population. In the proposed work, the fitness value is
calculated by incorporating the utility function of MCS
tasks in the non-cooperative game model as an
optimization objective in the total fitness function. The
utility function aims to manage the interactions and
mitigate the selfish behavior of the MCS participants. It is
calculated as a summation of the utilities of all players
(tasks) as in Eq. (11). This utility should be maximized to
benefit both MCS participants by maximizing their profits,
and the fog-cloud system by minimizing the total
execution time and cost. On the other hand, the second
objective included in the total fitness function is makespn.
This objective should be minimized to optimize the fog-
cloud system performance in terms of total execution time.
To maintain these two conflicting objectives, the total
fitness function 𝐹total is introduced to be a maximizing
function for the two objectives as

𝐹total = 𝑤
min−makespan

makespan(I)
+ (1 − 𝑤)

𝑈𝑀(𝑆)

max{ 𝑈𝑀(𝑆)}
 (15)

where the min −makespan represent the minimum

makespan obtained across all individuals (solutions) in the

current population, and makespan(I) refers to the

makespan of the current individual. Also, max{ 𝑈𝑀(𝑆)}
refers to the maximum utility obtained from all individuals,

while 𝑈𝑀(𝑆) represent the utility function of the current

solution. 𝑤 represent a coefficient to balance the influence

of the fitness function and the utility function. This weight

determines the relative importance of the two functions. It

should be a value between 0 and 1, The value w coefficient

is tested under different conditions in the simulation, and

selected to be 0.5.

4) Population sorting and grouping

Exploration and exploitation represent the fundamental

principles that characterize the capabilities of evolutionary

algorithms (EAs). To enhance the exploitation and

exploration of genetic algorithms and to maintain a good

balance between them, we propose a population sorting

and grouping strategy. Instead of applying the genetic

operators (selection, crossover, and mutation) to the entire

population, we divide the population into three equal

groups based on the fitness of the individuals. This

grouping strategy allows the genetic operators to be

performed according to the specific needs of each group,

thereby improving the exploration of the unseen regions of

the search space, as well as exploiting the already-found

promising solutions. The three groups are described as

follows:

Elite group: This group contains individuals with the

highest fitness values. They represent the top-performing

solutions in the current population.

Moderate group: The Moderate group consists of

individuals with moderate fitness levels. These individuals

introduce potential solution but may benefit from

increased genetic diversity to explore new solution spaces

Diversity group: The diversity group comprises

individuals with lower fitness values. These individuals

may hold a high rate of unexplored regions of the search

space. Fig. 4 explains the process of sorting and grouping

the population.

Fig. 4. Population sorting and grouping.

5) Selection

The selection of parents in a genetic algorithm is a

critical step that governs the genetic diversity and

evolutionary progress of the genetic algorithm. This

process involves choosing a subset of individuals from the

population to serve as parents for the subsequent genetic

operators. During the selection phase of the genetic

algorithm, individuals are selected based on their fitness

values. The total fitness function 𝐹total in Eq. (15) is used to

evaluate the individuals in our approach. The selection

operator will be performed separately for each group to

select two parents, the first parent will be selected as the

individual with the highest fitness in his group, while the

second parent will be selected randomly from the same

group.

6) Crossover operator

Crossover is the process where two or more parent

solutions are selected from the population to create one or

more offspring solutions. These offspring solutions inherit

genetic material from their parents in a way that mimics

biological reproduction. The goal of crossover is to explore

the unseen regions of the search space and produce

offspring that inherit the best characteristics of their

parents, ideally leading to improved solutions over time

[14].

The proposed adaptive crossover implements the

crossover operator within each group. For the elite group,

a high-exploitation crossover technique and a lower

crossover rate are chosen to preserve their valuable traits.

the elite group will use a one-point crossover with a low

crossover rate. Single-point crossover involves selecting a

single crossover point (cp) along the chromosome, and

genes to the right of that point in one parent are swapped

with the genes to the right of the same point in the other

parent. This creates two new offspring, each containing a

combination of genes from both parents.

The intermediate group will use a two-point crossover

with a moderate crossover rate to explore a broader

solution space. Two-point crossover is similar to single-

point crossover, but it involves selecting two crossover

points (𝑐𝑃1, and 𝑐𝑃2). Genes between the two points in one

parent are swapped with the corresponding genes between

the two points in the other parent. This results in two

offspring with genes exchanged in the segments between

the two points.

To encourage exploration within the diversity group, we

will apply a uniform crossover with a higher crossover rate

to promote diversity and potentially discover a good

solution. Uniform crossover is a more flexible crossover

method. Instead of specifying fixed crossover points, it

randomly selects genes from both parents with equal

probability (𝑃uni) to decide whether it comes from the first

or second parent. This method can introduce greater

diversity into the offspring by allowing for a more random

mixing of genes. Fig. 5 explains the three types of

crossover operators used in the proposed approach.

Fig. 5. Crossover operator types.

The pseudo code of the proposed adaptive crossover

strategy is described in Algorithm 2.

Algorithm 2: the proposed Adaptive Crossover algorithm

Input:

 Two Parents for each group (Elite, Moderate, and Diversity)

Output:
 Two offspring for each group

Chrom.1

Chrom.2

Chrom.3

Chrom.4

.

.

.

.

.

.

.

.

.

Chrom.𝐾−1

Chrom.𝐾

Chrom.1

.

.

.

Chrom.𝐾/3

Chrom. 𝐾
3
 1

.

.

.

Chrom. 2∗𝐾
3

Chrom. 𝐾
3
 1

.

.

.

Chrom.𝐾

Elite Group

Moderate Group

Diversity Group

Sorting based on
Fitness & Grouping

With Best Fitness

With Worst Fitness

3 7 4 8 5 1 6 2

7 2 5 3 6 4 1 8

p
Crossover Point

3 7 5 3 6 4 1 8

7 2 4 8 5 1 6 2

3 7 5 3 6 1 6 2

7 2 4 8 5 4 1 8

7 7 5 8 5 4 1 2

3 2 4 3 6 1 6 8

3 7 4 8 5 1 6 2

7 2 5 3 6 4 1 8

Crossover Points

3 7 4 8 5 1 6 2

7 2 5 3 6 4 1 8

Single Point Crossover

Two Point Crossover

Uniform Crossover

Parent Chromosomes

Parent Chromosomes

Parent Chromosomes

Offspring Chromosomes

Offspring Chromosomes

Offspring Chromosomes

1. P1_ elite =the first individual in elite group
2. P2_ elite = randomly selected from elite group

3. r= generated randomly [0–1]

4. If (r <𝑃𝑐1) do

5.
// generate crossover point (𝑐𝑃)
𝑐𝑃= generate random number between [1–M]

6. Single point crossover (P1_ elite, P2_ elite, 𝑐𝑃)

7. End if

8. P1_ moderate =the first individual in moderate group

9. P2_ moderate = randomly selected from moderate group

10. If (r < 𝑃𝑐2) do

11.
// generate crossover points (𝑐𝑃1 and 𝑐𝑃2)
𝑐𝑃1= generate randomly as: 1 ≤ 𝑐𝑃1 < 𝑀

12. 𝑐𝑃2= generate randomly as: 𝑐𝑃1 < 𝑐𝑃2 ≤ 𝑀

13.
two-point crossover (P1_ moderate, P2_ moderate, 𝑐𝑃1,
𝑐𝑃2)

14. End if

15. P1_ diversity =the first individual in diversity group

16. P2_ diversity= randomly selected from diversity group

17. If (r < 𝑃c3) do

18. 𝑃uni = 0.5 // probability of exchanging positions

19. uniform crossover (P1_ diversity, P2_ diversity, 𝑃uni)

20. End if

7) Mutation operator
Mutation in GAs is considered the key operator that

increases the population diversity and enables the
exploration of promising areas in the search space. This
operator is applied to the offspring of the crossover
operator with a probability called the mutation (𝑃𝑚). In the
proposed work, a multi-point flip mutation is performed on
each offspring. The multi-point flip mutation is similar to
the bit-flip mutation except that it works on integer
numbers. Each gene will be mutated if the generated
random number is less than 𝑃𝑚 , in this way, the tasks
chosen are assigned to be processed on another node. Fig.
6 explains the multi-point flip mutation.

Fig. 6. Multi-point flip mutation.

8) Overall model of the proposed GTGA

The flowchart of the proposed GTGA approach is

explained in Fig. 7. As shown in the flowchart, first the

GTGA initializes the first population using the diversity-

guided initialization method. Subsequently, the fitness

value of each individual within the population is assessed,

these individuals are then categorized into three different

groups based on their fitness levels. After that, GTGA

evolves the population by performing the proposed

adaptive crossover and the multi-point flip mutation.

Following this evolution, the newly generated offspring

will be evaluated and replace their parents if they exhibit

superior fitness values. This iterative process continues

until a specified number of iterations (Imax) is reached. In

the final iteration, the algorithm selects the best individual

from the population as the solution to the task-scheduling

game.

Fig. 7. The proposed GTGA approach flowchart.

The pseudo-code of the proposed GTGA approach is

outlined in Algorithm 3.

Algorithm 3: the proposed GTGA algorithm

Input:

 T: set of MCS tasks

V: set of fog-cloud nodes

Imax : Maximum number of Iteration

Output:
 Best mapping of T on V

1 elite-list =new list, moderate-list =new list

diversity-list = new list, k=1

2 pop= DGI algorithm (𝑃size, Hthreshold ,𝑁,𝑀),

3 Evaluate the fitness of each individual according to (15)

4 𝐹total = 𝑤
min−makespan

makespan(𝐼)
+ (1 −𝑤)

𝑈𝑀(𝑆)

max{ 𝑈𝑀(𝑆)}

5 While (k ≤ Imax) do

6
//Sort individuals ascendingly according to their fitness

pop. sort ()

7 For i=1 to (𝑃size /3) − 1 do

8 elite-list. Add (Ind𝑖)

Initial Population generation using DGI algorithm

(Algorithm 1)

Fitness Evaluation of Individuals according to:

𝐹 = 𝑤
min−makespan

makespan(I)
+ (1− 𝑤)

𝑈𝑀(𝑆)

max{ 𝑈𝑀(𝑆)}

Population Sorting and Grouping

Parents Selection (Two parents per each group)

Crossover using Adaptive Crossover Algorithm

(Algorithm 2)

Mutation – Multi-Point Flip Mutation

Offspring evaluation and Replacement

Start

Max

Iterations

reached?

End

Final population with the best Schedule

yes

no

9 End for

10 For i=(𝑃size /3) to (2𝑃size /3) − 1 do

11 moderate-list. Add (Ind𝑖)
12 End for

13 For i= (2𝑃size /3) to 𝑃size do

14 diversity-list. Add (Ind𝑖)
15 End for

16 Parents selections (two parents per each group)
17 Adaptive crossover using algorithm 2

18 Multi-point flip mutation (offspring)

19 Evaluate offspring finesse according to (15)

20 If (offspring fitness > parents’ fitness) do

21 Replace parents with offspring

22 End if k=k+1

23 End while

24
Final population (with individual that represent best schedule

of T on V)

D. Evaluation Metrics Modeling

To evaluate the proposed approach, five evaluation

metrics are employed. They are makespan, total system

cost, throughput, energy consumption, and degree of

imbalance.

The term “makespan” represents the maximum duration

consumed to complete a given set of tasks. Many factors

can affect the makespan such as task size, length, resource

availability, system load, and the algorithms applied for

task scheduling. Reducing the makespan is essential for

enhancing resource usage and improving the performance

of the fog-cloud system. Mathematically, makespan [28,

29] is formulated as

makespan = max(ET𝑣𝑖) ∀ 𝑖 ∈ 1,2,3, …𝑛 (16)

In this context, 𝐸𝑇𝑣𝑖 denotes the total execution time

taken for all tasks allocated to the ith node and is calculated

as

ETvi = ∑  𝑚
𝑗=1 ET𝑗,𝑖 × 𝐴𝑖,𝑗 (17)

where 𝐴𝑖,𝑗 is a Boolean variable, is set to be 1 when a task

Tj is scheduled on the node 𝑉𝑖.
The second evaluation parameter utilized for our study

is throughput, denoting the total tasks completed within a

specified makespan, and mathematically formulated as [30]

Throughput =
∑𝐴𝑖,𝑗

makespan
 (18)

The next evaluation metric is the total system cost which

represents the summation of the costs of all tasks. Where,

the cost of a given task compromises the processing cost,

bandwidth usage cost, and memory usage cost. The total

system cost is calculated as [23]

Total system Cost = ∑ Cost𝑗
𝑀
𝑗=1 (19)

Another evaluation metric used in the experiments is

energy consumption. the energy consumption of each node

depends on two main factors: its state mode (idle or active)

and the time consumed in each state. The power

consumption of node Vi in an active state 𝑃𝑖
active is

calculated as

𝑃𝑖
active = 𝛶 ×MIPS𝑖

2 (20)

where 𝛶 = 10−8, the power consumption of the node Vi in

an idle state 𝑃𝑖
idle is calculated as

𝑃𝑖
idle = 0.6 × 𝑃𝑖

active (21)

The total power consumed by the node Vi is calculated

as [25]

Ɛ𝑖 = [ETv𝑖 × 𝑃𝑖
active + (makespan − ETvi) × 𝑃𝑖

idle] ×
 MIPS𝑖 (22)

The total energy consumption of the system (all nodes) of

executing the set M of tasks is obtained as

 Ɛtot = ∑ Ɛ𝑖
𝑁
𝑖=1 (23)

The last evaluation metric is the degree of imbalance.

Evaluating the balance of workloads among nodes can

effectively demonstrate the efficiency of the proposed

algorithm. Therefore, we use the Degree of Imbalance

metric to evaluate the load balancing, Degree of Imbalance

(DI) can be calculated as [25]

DI =
makespan−min𝑖∈𝑁  (ETv𝑖)

∑𝑖=1
|𝑁|
 ETv𝑖/|𝑁|

 (24)

IV. PERFORMANCE EVALUATION

This section presents details about the experimental
environment setup, workload characteristics, results, and
discussions.

A. Experimental Setup

The proposed approach is implemented using the
CloudSim simulator. The CloudSim is a Java-based
simulation toolkit that can model and simulate cloud
computing and data center environments. We extended the
CloudSim simulator by adding some classes for the
proposed genetic algorithm and modifying some of the
existing classes to meet the requirement for simulating the
integrated fog-cloud environment. The experimental setup
comprises an Intel Core i7 2.7 GHz CPU, 16.00 GB of
RAM, and a 512 GB hard drive. The experiments were
conducted using the Eclipse IDE 2021 R in conjunction
with CloudSim. The specific configuration properties of
the simulation experimental environment are detailed in
Table II.

TABLE II: SIMULATION ENVIRONMENT PARAMETERS

Parameter Value

Processor Intel Core i7 2.7 GHz
RAM 16.00 GB Memory

Operating system Windows 10

Simulation Environment CloudSim simulator
IDE Tool Eclipse IDE

In our implementation, we examined two simulation

scenarios, each one with different simulation parameters.

This approach allowed us to evaluate the performance of

the proposed model using a variety of evaluation metrics.

1) Scenario 1

In this experimental scenario, three fog nodes with ten

cloud nodes are included. Cloud and Fog nodes exhibit

different processing power as well as resource usage costs.

It was assumed that each node is characterized by its

individual processing capacity, measured in MIPS

(Million Instructions Per Second), along with associated

costs related to CPU, memory, and bandwidth usage. Grid

Dollars (G$), a simulation currency, is used in the

simulation environments as a cost unit. The fog-cloud

system characteristics for this scenario are listed in Table

III.

TABLE III: FOG-CLOUD SYSTEM ATTRIBUTES FOR SCENARIO 1

Parameter Fog Cloud Unit

No. of Nodes 10 3 -

CPU Rate [500–1500] [3000–5000] MIPS

Memory cost [0.01–0.03] [0.02–0.05] Grid $ per MB
Bandwidth cost [0.01–0.02] [0.05–0.1] Grid $ per MB

CPU usage cost [0.1–0.4] [0.7–1] Grid $ per MB

The main responsibility of the fog-cloud system is

executing all MCS tasks. Each task possesses specific

attributes, including the number of instructions, memory

requirements, input file size, and output file size. A

varying number of tasks ranging from 40 to 500 tasks were

incorporated in this experiment scenario. The task

attributes are generated randomly in this experiment to

ensure a diverse range of task sizes and workloads for

comprehensive analysis. Table IV shows the task attributes

for Scenario 1.

TABLE IV: TASK ATTRIBUTES FOR SCENARIO 1

Parameter Value Unit

Task Length [1–00] 109 MI

Memory Required [50–200] MB
Input file size [10–100] MB

Output file size [10–100] MB

In Scenario 1, the proposed GTGA algorithm is

evaluated against discrete non-dominated sorting genetic

algorithm II (DNSGA-II) [23], time-cost aware scheduling

(TCaS) [20], and BLA [31]. The superiority of the

proposed methods over other methods is presented in the

next subsection. Table V shows the parameter settings of

three evolutionary algorithms for Scenario 1.

TABLE V: PARAMETERS SETTING FOR SCENARIO 1

Parameter GTGA TCaS DNSGA-II BLA

Running times 30 30 30 30

Population Size 100 100 100 100

Crossover rates

Pc1=0.4,

Pc2=0.7,

Pc3=0.9

0.9 1 0.9

Mutation Rates 0.01 0.01 0.01 0.01

Number of

Generations
500 500 500 500

2) Scenario 2

In this experimental scenario, the fog-cloud broker

receives multiple job requests, each job comprising a

variable number of independent tasks that can be

processed on different fog and/or cloud nodes. The number

of tasks within each job is randomly chosen, ranging from

1 to 10, and the length of each independent task is chosen

randomly within the 500 to 5000 million instructions (MI)

range. Table VI shows the task parameters for Scenario 2.

TABLE VI: TASK ATTRIBUTES FOR SCENARIO 2

Parameter Value Unit

Number of tasks per job [1–10] -

Task length [500–5000] MI
Input file size [0.5–5] MB

Output file size [0.1–1] MB

Job deadline [1–10] Second

The number of jobs is selected to be 5, 10, 15, 20 and

25. It’s important to note that the number of available fog

and cloud nodes remains constant throughout this

experimental scenario, with 30 fog nodes and 10 cloud

nodes. This experiment investigates the impact of different

numbers of jobs and tasks on the system’s performance.

Table VII shows the fog and cloud node attributes for this

experiment scenario.

TABLE VII: FOG-CLOUD SYSTEM ATTRIBUTES FOR SCENARIO 2

Parameter Fog Cloud Unit

No. of nodes 30 10 -
CPU rate [1000–4000] [5000–20000] MIPS

The proposed GTGA algorithm is compared against the

Grasshopper Optimization Algorithm (GOA) [25], Grey

Wolf Optimization (GWO) [25], MFO [32], and GA [22]

The simulation is conducted iteratively, repeated 10 times,

with 500 iterations for each run. All algorithms employ a

population size of 200. In the case of the Genetic

Algorithm (GA), the crossover rate is set to 0.9, and the

mutation rate is configured at 0.01. In our GTGA

algorithm, the crossover rates are set to be 𝑃𝑐1 = 0.4 ,

𝑃𝑐2 = 0.4, 𝑃𝑐3 = 0.4, and the mutation rate 𝑃𝑚 = 0.01.

B. Simulation Results

This section introduces the experimental results of the

proposed GTGA algorithm for the two scenarios. GTGA

has been evaluated and compared using various inertial

parameters. The main evaluation metrics conducted in the

simulation are Makespan, throughput, total cost, power

consumption, and degree of imbalance. The performance

of the GTGA task scheduling approach is measured using

Eqs. (16), (18), (19), (23), and (24), respectively.

1) Experimental results for Scenario 1
The proposed method will be evaluated in terms of

makespan, total cost, and throughput in this scenario. Fig.
8 clearly shows that our method performs better than
DNSGA-II, TCaS, and BLA. It can be illustrated that, on
average, the GTGA approach achieves a reduction in
makespan of 8.1%, 27.3%, and 46.6% compared to
DNSGA-II, TCaS, and BLA methods, respectively, when
scheduling 40 to 500 tasks. This signifies the effectiveness
of our algorithm in seeking the optimal schedule by
integrating the concept of non-cooperative game theory
with the genetic algorithm.

The results in Fig. 9 demonstrate that GTGA has the
lowest system cost in all cases of Scenario 1, while the
highest cost is for the tasks executed with the TCaS.
GTGA can save a total system cost of 4.91%, 41.73%, and
40% as compared to DNSGA-II, TCaS, and BLA,
respectively. The proposed method integrates the utility
function of MCS tasks into the overall fitness function of

the system. This ensures that the execution cost of tasks is
minimized by utilizing nodes that offer the lowest cost.

Fig. 8. Comparison of makespan for Scenario 1.

Fig. 9. Total cost comparison of Scenario 1.

Fig. 10. Throughput comparison of Scenario 1.

Fig. 10 illustrates the throughput performance for
Scenario 1. It can be observed that the average throughput
is enhanced by 9%, 33.2%, and 87.4 as compared with
DNSGA-II, TCaS, and BLA methods respectively.

2) Experimental results for Scenario 2
This section introduces the experimental results of

implementing Scenario 2. For this scenario, we evaluate
the performance of the proposed GTGA approach in terms
of makespan, energy Consumption, and degree of
imbalance. The results are compared with GOA, GWO,
MFO, and GA.

Fig. 11 shows the makespan comparison results for
Scenario 2. The results indicate that the GTGA method
performed better than GOA, GWO, MFO, and GA with a
reduction in makespan of 9.1%, 27.06%, 61.2%, and 36.87%
respectively.

Fig. 11. Comparison of makespan for Scenario 2.

The results of energy consumption for Scenario 2 are

evaluated and compared with the other algorithms. In this

context, the proposed GTGA algorithm exhibits superior

performance when compared with GOA, GWO, MFO, and

GA by reducing the total energy consumption by 11.24%,

24.56%, 58.20%, and 36.75% respectively. Fig. 12 Shows

the power consumption results for Scenario 2.

Fig. 12. Energy consumption comparison for Scenario 2.

Fig. 13. Degree of imbalance comparison for Scenario 2.

0

500

1000

1500

2000

2500

3000

40 80 120 160 200 250 300 350 400 450 500

M
ak

es
p

an
 (

s)

Number of Tasks

GTGA DNSGA II TCaS BLA

0

2000

4000

6000

8000

10000

12000

40 80 120 160 200 250 300 350 400 450 500

T
o
ta

l
C

o
st

 (
$

)

Number of Tasks

GTGA DNSGA II TCaS BLA

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

40 80 120 160 200 250 300 350 400 450 500

T
h

ro
u

g
h

p
u

t
(s

)

Number of Tasks

GTGA DNSGA II TCaS BLA

0

2

4

6

8

10

12

14

16

5 10 15 20 25

M
ak

es
p

an
 (

s)

Number of Tasks

GTGA GOA GWO MFO GA

0

200

400

600

800

1000

1200

1400

1600

1800

2000

5 10 15 20 25

En
er

gy
 C

o
n

su
m

p
ti

o
n

 (
K

J)

Number of Tasks

GTGA GOA GWO MFO GA

0

1

2

3

4

5

6

5 10 15 20 25

D
eg

re
e

o
f

Im
b
al

an
ce

Number of Tasks

GTGA GOA GWO MFO GA

Comparing the results of the degree of imbalance in a

computational system is essential for assessing the

effectiveness of various algorithms in achieving load

distribution and resource utilization. In this context, the

proposed GTGA algorithm demonstrates its superiority

when compared with GOA, GWO, MFO, and GA by

enhancing the DI by 8.83%, 15.90%, 44.29%, and 15.87%

respectively as shown in Fig. 13.

V. CONCLUSION

This paper proposed a game theoretical model for

scheduling MCS tasks in the fog-cloud system. The

proposed GTGA approach modeled the interaction

between the self-interested MCS participants as a non-

cooperative game aiming to mitigate their selfishness. A

modified genetic algorithm has been utilized to solve the

proposed scheduling game model. In the proposed

approach, three main enhancements for GA are introduced

to improve the exploitation and exploration abilities of the

GA and to maintain a good balance between them. First,

the initial population is generated in a way that helps to

explore the whole search space to avoid falling in the local

optima during the first iterations. Then, the population is

partitioned into three groups, namely, elite, moderate, and

diversity, each group exhibits different characteristics

regarding exploration and exploitation. Finally, an

adaptive crossover operator is introduced in which

different crossover types with different crossover rates are

introduced to meet the specific requirements of each group.

The proposed scheduling model benefits both the fog-

cloud nodes, and the MCS participants, and maximizes the

overall performance of the system. The simulation results

have shown (i) Increased throughput and decreased

makespan values (ii) reduced total system cost for

processing the MCS tasks (iii) decreased total energy

consumption on the fog-cloud nodes. The proposed

approach is observed to have better performance as

compared to the state of art algorithms.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Furkan Rabee and Ahmed R. Kadim conducted the

research; Furkan Rabee, Ahmed R. Kadim analyzed the

data; Ahmed R. Kadim designed and implemented the

algorithms; Furkan Rabee and Ahmed R. Kadim wrote the

paper; Furkan Rabee and Ahmed R. Kadim had approved

the final version.

REFERENCES

[1] A. Capponi, C. Fiandrino, B. Kantarci, L. Foschini, D. Kliazovich,

and P. Bouvry, “A survey on mobile crowdsensing systems:
Challenges, solutions, and opportunities,” IEEE Communications

Surveys & Tutorials, vol. 21, no. 3, pp. 2419–2465, 2019.

[2] Y. Liu, H. Li, X. Guan, K. Yuan, G. Zhao, and J. Duan, “Review of
incentive mechanism for mobile crowd sensing,” J Chongqing Univ

Posts Telecommun (Natural Science Edition), vol. 30, no. 2, pp.
147–158, 2018.

[3] C. K. Ng and N. A. Jumadi, “IoT-based instrumentation
development for reaction time, kick impact force, and flexibility

index measurement,” International Journal of Electrical and

Electronic Engineering & Telecommunications, vol. 11, no. 1, pp.
82–87, 2022.

[4] S. H. Supangkat, R. Ragajaya, and A. B. Setyadji, “Implementation

of digital geotwin-based mobile crowdsensing to support
monitoring system in smart city,” Sustainability, vol. 15, no. 5,

#3942, 2023.

[5] C. Yang, Q. Huang, Z. Li, K. Liu, and F. Hu, “Big data and cloud
computing: innovation opportunities and challenges,” International

Journal of Digital Earth, vol. 10, no. 1, pp. 13–53, 2017.

[6] A. M. A. Al-muqarm and N. A. Hussien, “Dynamic cost-optimized
resources management and task scheduling with deadline constraint

for mobile crowd sensing environment,” Int. J. Intell. Eng. Syst.,

vol. 16, no. 3, 2023, doi: 10.22266/ijies2023.0630.16.

[7] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the

fog: Towards a comprehensive definition of fog computing,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 5, pp.

27–32, 2014.

[8] R. O. Aburukba, M. AliKarrar, T. Landolsi, and K. El-Fakih,
“Scheduling internet of things requests to minimize latency in

hybrid fog--cloud computing,” Future Generation Computer

Systems, vol. 111, pp. 539–551, Oct. 2020.
[9] J. Jiang, Z. Li, Y. Tian, and N. Al-Nabhan, “A review of techniques

and methods for IoT applications in collaborative cloud-fog
environment,” Security and Communication Networks, vol. 2020,

#8849181, 2020.

[10] G. Manogaran and B. S. Rawal, “An efficient resource allocation
scheme with optimal node placement in IoT-fog-cloud architecture,”

IEEE Sensors Journal, vol. 21, no. 22, pp. 25106–25113, 2021.

[11] R. O. Aburukba, T. Landolsi, and D. Omer, “A heuristic scheduling
approach for fog-cloud computing environment with stationary IoT

devices,” Journal of Network and Computer Applications, vol. 180,

#102994, 2021.
[12] J. H. Holland, “Genetic algorithms,” Scientific American, vol. 267,

no. 1, pp. 66–73, 1992.

[13] F. A. Omara and M. M. Arafa, “Genetic algorithms for task
scheduling problem,” Journal of Parallel and Distributed

Computing, vol. 70, no. 1, pp. 13–22, 2010.

[14] F. Rabee and Z. M. Hussain, “Oriented crossover in genetic
algorithms for computer networks optimization,” Information, vol.

14, no. 5, #276, 2023.

[15] M. J. Osborne, An Introduction to Game Theory, Oxford New York:
University Press 2004.

[16] T. Roughgarden, “Algorithmic game theory,” Communications of

the ACM, vol. 53, no. 7, pp. 78–86, 2010.
[17] F. Hoseiny, S. Azizi, M. Shojafar, F. Ahmadiazar, and R. Tafazolli,

“PGA: a priority-aware genetic algorithm for task scheduling in

heterogeneous fog-cloud computing,” in Proc. of IEEE Conference
on Computer Communications Workshops , 2021, pp. 1–6.

[18] M. A. Elaziz, L. Abualigah, and I. Attiya, “Advanced optimization

technique for scheduling IoT tasks in cloud-fog computing
environments,” Future Generation Computer Systems, vol. 124, pp.

142–154, Nov. 2021.

[19] S. Wang, T. Zhao, and S. Pang, “Task scheduling algorithm based
on improved firework algorithm in fog computing,” IEEE Access,

vol. 8, pp. 32385–32394, 2020.

[20] B. M. Nguyen, H. Thi Thanh Binh, T. The Anh, and D. Bao Son,
“Evolutionary algorithms to optimize task scheduling problem for

the IoT based bag-of-tasks application in cloud--fog computing

environment,” Applied Sciences, vol. 9, no. 9, #1730, 2019.
[21] N. A. Alsamarai, O. N. Uçan, and O. F. Khalaf, “Bandwidth-

deadline IoT task scheduling in fog--cloud computing environment

based on the task bandwidth,” Wireless Personal Communications,
pp. 1–17, 2023, doi: 10.1007/s11277-023-10567-1.

[22] R. O. Aburukba, M. AliKarrar, T. Landolsi, and K. El-Fakih,

“Scheduling internet of things requests to minimize latency in
hybrid fog–cloud computing,” Future Generation Computer

Systems, vol. 111, pp. 539–551, Oct. 2020.

[23] I. M. Ali, K. M. Sallam, N. Moustafa, R. Chakraborty, M. Ryan,
and K.-K. R. Choo, “An automated task scheduling model using

non-dominated sorting genetic algorithm II for fog-cloud systems,”

IEEE Trans. on Cloud Computing, vol. 10, no. 4, pp. 2294–2308,
2020.

[24] F. Hoseiny, S. Azizi, M. Shojafar, and R. Tafazolli, “Joint QoS-
aware and cost-efficient task scheduling for fog-cloud resources in

a volunteer computing system,” ACM Trans. on Internet

Technology, vol. 21, no. 4, pp. 1–21, 2021.
[25] S. Dabiri, S. Azizi, and A. Abdollahpouri, “Optimizing deadline

violation time and energy consumption of IoT jobs in fog--cloud

computing,” Neural Computing and Applications, vol. 34, no. 23,
pp. 21157–21173, 2022.

[26] C. A. Holt and A. E. Roth, “The Nash equilibrium: A perspective,”

Proceedings of the National Academy of Sciences, vol. 101, no. 12,
pp. 3999–4002, 2004.

[27] A. Bookstein, V. A. Kulyukin, and T. Raita, “Generalized hamming

distance,” Information Retrieval, vol. 5, pp. 353–375, 2002.
[28] D. Alsadie, “TSMGWO: Optimizing task schedule using multi-

objectives grey wolf optimizer for cloud data centers,” IEEE Access,

vol. 9, pp. 37707–37725, 2021.
[29] A. Dhari and K. I. Arif, “An efficient load balancing scheme for

cloud computing,” Indian Journal of Science and Technology, vol.

10, no. 11, pp. 1–8, 2017.
[30] A. R. Kadhim and F. Rabee, “Deadline and cost aware dynamic task

scheduling in cloud computing based on stackelberg game,”

International Journal of Intelligent Engineering & Systems, vol. 16,
no. 3, 2023, doi: 10.22266/ijies2023.0630.14.

[31] S. Bitam, S. Zeadally, and A. Mellouk, “Fog computing job

scheduling optimization based on bees swarm,” Enterprise
Information Systems, vol. 12, no. 4, pp. 373–397, 2018.

[32] M. Ghobaei-Arani, A. Souri, F. Safara, and M. Norouzi, “An

efficient task scheduling approach using moth-flame optimization
algorithm for cyber-physical system applications in fog computing,”

Trans. on Emerging Telecommunications Technologies, vol. 31, no.

2, #e3770, 2020.

Copyright © 2024 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-
NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Ahmed R. Kadhim is Lecturer at Faculty of
Computer Science and Mathematics,

University of Kufa, Najaf, Iraq. He received

his bachelor degree in Computer Engineering
from University of Basra in 2010. Later, he

earned his master degree in Network

Engineering from K. N. T University, Iran in
2017. His research interests are computer

network, internet of things, scheduling

algorithms, mobile crowdsensing, fog
computing and cloud computing. He can be

contacted at email: ahmedr.alkhafajee@uokufa.edu.iq.

Furkan Rabee is a staff member in the

Computer Science Department, Faculty of

Computer Science and Mathematics, at the
University of Kufa, Iraq. He got BSc and MSc

in Computer Engineering from AL- Nahrian

University in 2000 and 2008, Bagdad, Iraq. He
got Ph.D. in Computer Science and IT from the

School of Computer Science and Engineering,

UESTC, Chengdu, China 2015. The research
interests include real-time scheduling

algorithms, real-time locking protocols, operating systems, parallel

processing, distributed systems, computer network, iot, rfid design,
mobile computing, cloud computing, and smart cities.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

