
Enhanced PSO Optimized Leader in Cloud-Fog

Task Scheduling for IoT and Mobile

Crowdsensing Environments

Abbas M. Ali Al-muqarm1,* and Naseer Ali Hussien2

1 Department of Computer Science, Faculty of Computer Science and Mathematics, University of Kufa, Najaf, Iraq
2 Scientific Research Center, Alayen University, Wasit, Iraq

Email: abbasm.almuqarm@uokufa.edu.iq (A.M.A.), naseerali@alayen.edu.iq (N.A.H.)

Abstract—The data generated by the IoT needs a powerful

platform such as cloud computing for data processing.

However, the cloud faces challenges when dealing with

various types of resources, high delay, and cost, this

represents a substantial challenge in scheduling tasks.

Therefore, the need appeared to introduce the concept of fog.

To address these limitations, optimization algorithms such as

PSO were used. In traditional PSO, all particles in the swarm

are influenced by a single global best particle (Gbest), if it

becomes stuck in a local optimum, all the particles will move

closer to it, thus, the PSO may easily get trapped in

premature convergence. This paper proposed an adaptive

cloud-fog integrated approach based on modified PSO called

PSO Optimized Leader (PSO-OL). These modifications on

four stages: Firstly, a method to ensure swarm diversity in

the initialization phase is introduced. Secondly, to reduce the

chance of the population getting trapped in a local optimum,

the farthest-best particle is introduced. Third, in addition to

the primary Gbest, a second Gbest represents a different good

particle presented to explore multiple promising regions.

Finally proposed a new crossover operator to get an

optimized leader. The PSO-OL approach was evaluated and

the results show the effectiveness of the enhanced leader by

40% with farthest-best, 45% with second-Gbest when

compared to standard PSO, and when compared to

scheduling algorithms where outperforms the other

algorithms by minimizing makespan by 34%, cost by 14%,

and increasing throughput by 75%, in comparison to existing

load balancing and scheduling methods: RR, BLA, MPSO,

ETS, and TCaS.

Index Terms—cloud-fog, task scheduling, PSO, optimization,
IoT, mobile crowd sensing

I. INTRODUCTION

Internet of Thing (IoT) is a contemporary innovation
that has had a powerfully affected on communication and
information technologies. It has revolutionized how

various devices and objects, such as surveillance cameras,
cars, and smartphones, are linked to the Internet, enabling
them to execute a wide range of applications and
operations. These advancements, including M2M

technologies, have expanded Internet access to these

devices and have facilitated activities like controlling

traffic, vehicular networking, power management,
healthcare services, and healthcare. As a result, an
enormous volume of data is generated by these smart
devices, which requires management, processing, and

analysis to extract valuable insights and ensure that client
software and end users can access them [1]. While sensors
and IoT have proven to be efficient in data collection and
urban surveillance, the installation and deployment of

sensor devices across a city are both time-consuming and
costly. As an alternative to sensors and IoT, a novel
approach called Mobile Crowdsensing (MCS) has arisen.
MCS represents a new approach to data collection,
enabling regular individuals to share data from their

mobile devices. This information is pooled and processed
in the cloud to extract crowd intelligence and deliver
services focused on people's needs. The data gathered from
various sources is integrated into the cloud, serving as a

collector for storage and processing. This evolution
towards MCS is gaining importance as it replaces
conventional static sensors, offering a combination of
traditional IT advantages and mobile communication,
delivering cost effective, and top-quality services across

diverse domains. At present, smartphones come embedded
with a diverse collection of sensors, including cameras,
microphones, GPS systems, and accelerometers.
Consequently, MCS holds a distinct advantage over

conventional sensor utilization due to this enhanced sensor
suite [2].

Cloud computing, as the central component of the IoT,
offers a range of services including storage capacity,

powerful processing capabilities, and computing resources.
It also facilitates the visualization of these resources.
However, a common challenge with cloud servers is their
physical distance from end devices. This can lead to
significant delays in wide area networks (WAN) and a

diminished Quality of Service (QoS), especially in
applications that are sensitive to latency. Furthermore, as
the increasing number of devices that are connected and
IoT applications continue to grow, cloud computing

encounters various optimization issues. These challenges
include bandwidth limitations, privacy concerns, delays,
storage capacity constraints, security, and the need to
address the excessive concentration of computing
resources [3, 4].

Manuscript received October 29, 2023; revised November 29,

2023; accepted December 2, 2023.
*Corresponding author

Fog computing is an emerging architectural concept that
aims to address the remoteness issue between IoT devices
and cloud resources. This novel approach, innovative by
Cisco, extends the capabilities of cloud to the network's
edge. Although still in its early stages, fog computing has
gained recognition as a valuable addition to cloud. It can
be described as a distributed computing infrastructure that
brings computational power closer to the network's edge,
enabling cloud resources to be readily accessible.
Additionally, due to the notable network latency, the
transfer of IoT tasks to the cloud leads to a heightened
delay in the response time for data analysis [5].

Efficient task scheduling within cloud-fog architectures
is a critical concern. Optimizing the utilization of cloud-
fog resources to improve key factors like execution time of
tasks, operational costs, and consumption of energy is of
the greatest importance. Effective task scheduling within
fog system plays a vital role in cost reduction, processing
time, and communication delays. However, researchers
often face difficulties in identifying an efficient task
scheduling method that meets their requirements [6, 7].

Generally, the problem at hand is categorized as an NP-
hard problem since it cannot be efficiently solved in
polynomial time by adding more sensors and fog nodes.
As a result, traditional methods are unable to address this
challenge effectively. To overcome this issue, researchers
have turned their attention to swarm and evolutionary
algorithms. These algorithms have demonstrated
remarkable potential in solving problems of real world
efficiently within shorter time frames [8].

Meta-heuristic algorithms are employed to search for
near-optimal solutions through randomized search
processes. Popular meta-heuristics are applied for the
purpose of scheduling tasks such as, Particle Swarm

Optimization (PSO), Simulated Annealing (SA), Genetic
Algorithm (GA) and Ant Colony Optimization (ACO) are
commonly used for task scheduling such as in this paper
[9] a Multi-Objectives Grey Wolf Optimizer (MGWO)
algorithm has been introduced with the aim of minimizing

QoS objectives specifically reducing energy and latency
within the Fog-broker system. However, these meta-
heuristic algorithms are not without limitations, including
issues with randomness, limited capability for global

search, and problem of low convergence in the late
iterations, often leading to suboptimal local search
solutions. Moreover, achieving a balance between global
and local search poses a challenge.

Scheduling based on PSO achieves better optimization
performance compared to GA. PSO leverages a more
intuitive computational background, exhibits faster
convergence, and is easier to implement in comparison to
GA. PSO demonstrates versatility in handling both
discrete and continuous problems, highlighting its
efficiency in conducting global search within the problem
space. By prioritizing global convergence, PSO aims to
discover solutions with superior fitness values. However,
PSO may encounter limitations in conducting effective
local search and might not allocate sufficient attention to
exploring the local subspace. Consequently, as a result,
there may be a greater chance of becoming trapped in local
optima, leading to reduced convergence rates during later
stages [10].

While numerous variants of PSO have made significant
enhancements PSO, they are still unable to a successful
balance between exploration and exploitation. Issues like
inefficient search efficiency remain, particularly when
addressing complex global optimization problems. So
PSO Optimized Leader (PSO-OL) was proposed in this
paper to enhance the effectiveness of traditional PSO
algorithm.

The main contributions of this paper are summarized as

follows:

 This paper addresses the task scheduling issue as an

multi objective optimization problem in a cloud-fog

system for IoT/MCS.

 To mitigate the issue of premature convergence and

enhance exploitation and exploration capability to

reduce the local optimal problem, this paper

introduces a new variant of PSO called PSO-OL.

 The proposed PSO-OL improves the PSO approach

by introducing the selection strategy which is based

on fitness and distance to find the farthest-best particle,

in addition to introducing the second-Gbest. Then a

new crossover operator called Dynamic Crossover

Window (DCW) to find enhanced leader was

proposed.

 Comprehensive experiments were carried out with

five recent state of the art utilizing CloudSim

simulator under 11 distinct datasets and different

cloud and fog nodes to confirm the effectiveness of

the proposed system in managing the task scheduling

challenge. The results of the simulation showed good

results compared to the five algorithms. Further

demonstrated that a balance between cloud and fog

nodes produces superior outcomes.

The remaining sections of the paper are structured as

follows:

In Section II, an overview of related literature on

scheduling problems in cloud-fog systems is provided.

Section III outlines the cloud-fog architecture. Section IV

introduces standard PSO method. In section V the

proposed model is presented. section VI introduces the

proposed PSO-OL. In Section VII, performance metrics

are introduced. In Section VIII, the implementation and

experimental outcomes are presented. Section IX outlines

the conclusion and potential future research directions.

II. RELATED WORK

A comprehensive review of existing research on

resource management and task scheduling challenges in

Cloud and Fog computing for the IoT/MCS paradigm is

presented. It includes an analysis of the advantages and

restrictions of each of the reviewed studies.

This study proposes a semi dynamic for real time

scheduling task algorithm for IoT services in the cloud-fog

scheme. Leveraging a modified genetic algorithm, the

algorithm optimally assigns tasks to virtual machines

based on permutations, achieving minimal execution time.

Comparative evaluations demonstrate its superiority over

other algorithms in terms of time of execution, makespan,

failure rate, and average delay time. The proposed

algorithm offers a promising solution to enhance

efficiency in cloud data centers handling IoT applications

and resource utilization [11]. However, the results show no

improvement in makespan despite the increase in fog and

cloud nodes, and this indicates the ineffective in used for

cloud and fog nodes.

The authors in this paper utilized characteristics of two
meta-heuristic approaches, namely Cuckoo Search
Optimization (CSO) with PSO, to create a robust

framework for addressing IoT allocation requests in a
cloud-fog system. CPSO is focused on improving delay,
balancing the load, computation cost, and energy
consumption. The simulation outcomes clearly
demonstrated the superior performance of this hybrid

metaheuristic algorithm compared to baseline strategies
[12]. However, the concept of security was not clear in the
results for use in application allocation.

This paper presents a method for enhancing the

optimization of task scheduling challenges in cloud-fog
environments, focusing on reducing execution time and
operational expenses. The newly introduced approach,
referred to as TCaS, leverages an evolutionary algorithm

GA and has been assessed using 11 datasets of varying
sizes. The experimental outcomes demonstrate an
enhancement in achieving an equilibrium between task
completion time and operational cost [13]. But they used a
two-point crossover operator and this may not maintain the

quality of the genes.
Data transmission within a network results in elevated

latency and unreliable traffic patterns. To optimize
performance effectively, the authors introduced a new
combined heuristic method named Hybrid Flamingo
Search and Genetic Algorithm (HFSGA) is proposed for
cost-efficient QoS-aware task scheduling. The aim is to
minimize cost while enhancing QoS through efficient task
scheduling [14]. However, using two-point crossover
without adaptive to use in the field of task scheduling may
not be guaranteed to generate improved offspring

In this research, a hybrid meta heuristic method,
denoted as AO_AVOA, is formulated for IoT request
scheduling within fog-cloud networks. AO_AVOA
harnesses the Aquila Optimizer (AO) in conjunction with
the African-Vultures Optimization Algorithm (AVOA) to
improve the exploration phase of AVOA. In AO_AVOA,
AO is used to enhance the exploration phase of AVOA.
The results demonstrate the remarkable capability of
AO_AVOA in effectively addressing the scheduling
challenges within IoT-fog-cloud networks [15].
Nonetheless, the fitness was single-objective, which was
to depend on makespan improvement only, as this means
improvement in one direction contrary to multi-objective
algorithms.

This paper introduces the Energy Efficient Makespan
Cost Aware Scheduling (EMCS) algorithm, employing an
evolutionary approach (GA) to enhance time of execution,
cost efficiency, and energy utilization. Comprehensive
simulations were conducted to assess its effectiveness.
Findings indicate that optimizing the balance between fog
and cloud nodes as their numbers increase results in
improved performance across makespan, cost, and energy
consumption metrics [16], however, using the GA
algorithm without any modification may not be enough to
suit the topic of task scheduling in a cloud-fog system.

This paper introduced an innovative method to enhance

task scheduling within a cloud-fog environment, focusing

on two key aspects: execution time (makespan) and cost

expenses related to bag-of-tasks applications. The

proposed approach introduces a task scheduling

evolutionary algorithm, which incorporates a unique

problem representation and a consistent uniform

intersection strategy. Additionally, specialized

initialization and perturbation procedures, including

crossover and mutation operations, have been developed

to address situations where the evolutionary algorithm

encounters impractical solutions [17], however, the

uniform crossover can not ensure enhancement in

offspring because it works randomly.

This paper explores the equilibrium between two

prevalent and competing goals in task scheduling within

the distributed fog cloud environment, namely, makespan

and cost. To address this challenge, a novel hybrid

algorithm, known as Hybrid-Squirrel Search and Invasive-

Weed (HSSIW), is employed to efficiently allocate tasks

generated by IoT devices to suitable fog and cloud nodes.

The experimental evaluation conducted using CloudSim

demonstrates that the proposed approach reduces

makespan and cost [18], but, the authors restricted to

comparing with traditional algorithms without comparing

with the literature.

An in-depth examination of associated works reveals

and to the best of our knowledge, the researchers did not

use the PSO algorithm to find a solution to the problem of

scheduling (independent) tasks in a cloud-fog system, and

they also did not use the concept of the second-Gbest

individual with the Gbest using the dynamic crossover

concept. Furthermore, the incorporation of Mobile

Crowdsensing into the cloud-fog system was not

introduced.

III. CLOUD-FOG TASK SCHEDULING ARCHITECTURE

The hierarchy of three-layered architecture is illustrated

in Fig. 1, consisting of three tiers: the end layer (IoT/MCS),

the fog layer, as well as cloud layer. The end layer is

responsible for managing various IoT and MCS devices,

such as sensors, smart vehicles, mobile phones, and smart

cards, and MCS such as smartphones. This layer is widely

distributed geographically and in close proximity to the

users. Devices within this layer gather data from physical

objects or events and transmit it to the upper layers for

processing and storage. The fog layer comprises a network

of gateways, switches, routers, access points, and laptops.

Devices can connect with fog devices to access services.

These fog devices may be stationary or mobile and are

linked to the cloud layer to leverage its powerful

processing capabilities and extensive storage capacity. The

fog layer efficiently supports time sensitive and low delay

applications. Finally, the cloud layer consists of superior

servers and storage machines, providing robust computing

power and storage capabilities. This layer supports various

computational analyses and offers services like smart

home automation and smart manufacturing applications,

among others. By integrating these three layers, the

hierarchical fog architecture enables seamless and efficient

data processing and service delivery, catering to the

diverse needs of IoT/MCS applications [19, 20].

Fig. 1. Three layers architecture (cloud, fog and IoT/MCS).

IV. STANDARD PSO

PSO, which stands for Particle Swarm Optimization,
belongs to the category of Swarm Intelligence (SI)
algorithms. It draws its inspiration from the social behavior
observed in animals. Initially proposed by Eberhart and
Kennedy in 1995, PSO functions as a search optimization
technique, seeking the best optimal solution by facilitating
information sharing within the swarm of particles [21, 22].

A. Updating Particle Velocity

The control of velocity is regarded as a key component
of PSO since it is the primary mechanism utilized to move
a particle's position in order to find the best solution within
the search space. The velocity of particle k in the
population in iteration (t+1)th, is adjusted according to the
following expression:

𝑉𝑘
𝑡+1 = 𝑤𝑉𝑘

𝑡 + 𝑐1𝑟1(𝑃𝑏𝑘

𝑡 − 𝑋𝑘
𝑡) + 𝑐2𝑟2(𝑃Gb

𝑡 − 𝑋𝑘
𝑡) (1)

where 𝑉𝑘
𝑡+1 depicts the particle k velocity in iteration

(t+1)th, while 𝑋𝑘
𝑡 represents particle k position in iteration

tth. The term 𝑃𝑏𝑘

𝑡 refers to the particle k personal best

position during the tth iteration, and 𝑃Gb
𝑡 signifies the best

global position within all particles in the tth iteration. The
real acceleration coefficient c1 is a cognitive coefficient
and c2 is social coefficient governs the impact of particles
personal best position and global best position respectively.
Additionally, to maintain diversity within the population,
the uniformly distributed random numbers r1 and r2, both
ranging ∈ [0, 1] are used.

B. Updating Particle Position

The position for each particle 𝑘 , at every iteration
(t+1)th, is calculate according to (2):

𝑋𝑘
𝑡+1 = 𝑋𝑘

𝑡 + 𝑉𝑘
𝑡+1 (2)

where 𝑋𝑘
𝑡+1 represent particle k position in the (t+1)th

iteration.

During each iteration, every individual particle adjusts
its velocity and position using (1) and (2), respectively.
Consequently, every particle explores the search space

based on its updated velocity and position. This process

persists until the particle reaches convergence towards the
optimal solution.

After every particle adjusts information of its position

𝑋𝑘
𝑡+1 , calculates its fitness function value 𝐹(𝑋𝑘

𝑡+1) and

compares it to the value of fitness 𝐹𝑏𝑘

𝑡 at the particle's best

historical position.

If 𝐹(𝑋𝑘
𝑡+1) < 𝐹𝑏𝑘

𝑡 , meaning that the current particle

fitness function value is lower than the value of its fitness
at its historical-best position, thereafter the algorithm
updates the particles historical best position and assigns it

as 𝑋𝑘
𝑡+1. Otherwise, if the current fitness function value is

not smaller, the historical particle best position remains the
same. The calculation particle historical best-position can
be determined as follows:

𝑃𝑏𝑘

𝑡+1 = {
𝑋𝑘

𝑡+1; 𝐹(𝑋𝑘
𝑡+1) < 𝐹𝑏𝑘

𝑡

𝑃𝑏𝑘

𝑡 ; 𝐹(𝑋𝑘
𝑡+1) > 𝐹𝑏𝑘

𝑡 , otherwise
 (3)

Updated the particle PGb based on the comparison of the

fitness function 𝐹(𝑋𝑘
𝑡+1) of particle 𝐹𝑏𝑘

𝑡 with the fitness

function value FGb of PGb.

𝑃Gb = {
𝑃𝑏𝑘

t+1; 𝐹𝑏𝑘

t+1 < 𝐹Gb

𝑃Gb; 𝐹𝑏𝑘

t+1 > 𝐹Gb , otherwise
 (4)

The PSO algorithm pseudocode is shown in Algorithm
1 [22].

Algorithm 1: PSO Algorithm

 Input: lower bound LB, upper bound UB, Fitness

function, Population numbers 𝑃𝑛, Max iteration 𝑀iter,

𝜔, 𝑐1, 𝑐2 (user-defined).

 Output: Solution with the best fitness.

1: Initialize a random population 𝑃 with velocity 𝑉𝑘 and

position Xk of the kth particle within the bounds;

2: for 𝑡 = 1 to 𝑀iter do

3: for k = 1 to 𝑃𝑛 do

4: if 𝐹(𝑋𝑘
𝑡+1) < 𝐹𝑏𝑘

𝑡 then

5: 𝑃𝑏𝑘

𝑡+1 = 𝑋𝑘
𝑡+1

6: 𝐹𝑏𝑘

𝑡+1 = 𝐹(𝑋𝑘
𝑡+1)

7: end

8: else

9: 𝑃𝑏𝑘

𝑡+1 = 𝑃𝑏𝑘

𝑡

10: end

11: if 𝐹𝑏𝑘

𝑡+1 < 𝐹Gb then

12: 𝑃Gb = 𝑃𝑏𝑘

𝑡+1

13: 𝐹Gb = 𝐹𝑏𝑘

𝑡+1

14: end

15:
 Adjust the particle's velocity information based

on Eq. (1).

16:
 Adjust the particle's position information based

on Eq. (2).

17: end

18: end

 Continue the process until the termination criteria are

satisfied, which can occur when either the maximum

number of iterations is achieved or the desired accuracy

level is achieved.

V. PROPOSED SCHEDULING MODEL

In this section, we introduce the proposed PSO-OL

approach to improve the standard PSO algorithm to handle

the task scheduling challenge within virtualized fog-cloud

systems as in Fig. 2. The major goal of this algorithm is to

reduce the system makespan and cost while maximizing

resource utilization and throughput. PSO-OL includes

particle encoding, initializing population, fitness function,

and crossover operator to generate a new optimized leader,

in subsequent sections, we explain in-depth every stage

and the entire PSO-OL methodology for addressing the

specified problem.

A. Cloud-Fog-IoT Ecosystem Mechanism

In the fog environment, data processing occurs within a

hub located on smart devices, smart routers, gateways,

switches, laptops, and similar devices. Due to limited

processing capacity, certain fog nodes collaborate within a

regional context and connect to cloud nodes, commonly

known as cloud virtual machines, to fulfill the

requirements of mobile users. Our system assumes the

presence of cloud virtual nodes Cn, fog virtual nodes Fn,

cloud-fog broker brokerc-f, and IoT/MCS users 𝑈IoT/MCS.

All user requests are promptly forwarded to brokerc-f.

brokerc-f plays a crucial role in resource monitoring, task

monitoring, and scheduling tasks within the cloud-fog

system.

In order to ensure the performance of the system, the

proposed PSO-OL algorithm is implemented in brokerc-f.

Its primary objective is to discover the most efficient

schedule for task execution, optimizing both time and

resource utilization factors. The step-by-step explanation

of the ecosystem mechanism is shown in Fig. 3. The

process starts by sending the task request from (service

requester 𝑈IoT/MCS) which could be a person or a company

to brokerc-f (brokerc-f installed in MCS platform). MCS

platform sends requests to MCS workers and waits for a

response, after getting a response brokerc-f is responsible

for executing the scheduling algorithm. This algorithm

calculates the expected task completion time, considering

the capabilities of the available resources and the specific

requirements of each task, and allocates to suitable cloud

or fog nodes. Each node is responsible for processing the

received tasks and returning the results to brokerc-f. Finally,

the corresponding responses are returned to the requester.

Fig. 2. Proposed fog-cloud task scheduling model for IoT/MCS environment.

Fig. 3. The mechanism of cloud-fog system.

Request Tasks
IoT MCS

Io
T

 a
n

d
 M

C
S

L
a

y
er

F
o

g
 L

a
y

er
C

lo
u

d

L
a

y
er

Resources Monitor
...

Cloud Node 1 (VM) Cloud Node 2 (VM) Cloud Node n (VM)

...

Fog Node 1

(VM)

CPU Bandwidth RAM

Fog Node 2

(VM)

CPU Bandwidth RAM

Fog Node N

(VM)

CPU Bandwidth RAM

Requester

MCS Workers Area

Camera

Voice Recorder

GPS

Video

Worker Tasks:

Response

bonus

Tasks to

be sensing

MCS Platform

Cloud – Fog Broker

Request Tasks Response

Task Scheduler

.

Applications

Fog Broker (MCS platform)

PSO-OL

Task

Scheduler

Resources

Monitor

Task

Monitor
Fog VMs Cloud VMs

Send task {ID, Length, Deadline}

Check Vms of

Fog Capacity

If Fog VMs

suitable

Capacity

Send task

Task ExecuteReturn Response

Else

CPU, RAM, BWReturn info.

about VMs Capacity

Send task

Return Response
Task Execute

Return Response

Return Response

.

Applications

Fog Broker (MCS platform)

PSO-OL

Task

Scheduler

Resources

Monitor

Task

Monitor
Fog VMs Cloud VMs

Send task {ID, Length, Deadline}

Check Vms of

Fog Capacity

If Fog VMs

suitable

Capacity

Send task

Task ExecuteReturn Response

Else

CPU, RAM, BWReturn info.

about VMs Capacity

Send task

Return Response
Task Execute

Return Response

Return Response

B. Problem Formulation

If jobs are appropriately assigned to virtual

machines)VMs(, cloud-fog task scheduling can be

effective and achieve high performance. When requests

from 𝑈IoT/MCS applications are sent to brokerc-f, for

processing across the cloud-fog system. This explanation

assumes that the cloud-fog system is housed in a datacenter

with a variety of servers, each of which hosts a number of

virtual machines VMs. Let’s assume there are n tasks, and

they are as follows:

𝑇 = {𝑇1, 𝑇2, 𝑇3, … , 𝑇𝑛} (5)

Ti represents the ith independent task, i ∈ {1,2, ..., n}.

The attributes of each task Ti consist of various factors

such as {𝑇id, task length, memory demand, file sizes for

the input/output}. The task length is measured in terms of

Millions-of-Instructions (MI).

The cloud-fog infrastructure is composed of CPUs,

denoted as cloud-nodes Cn and fog-nodes Fn, each of

which has multiple characteristics, including various

processor powers, different bandwidth, memory sizes, and

storage capacity. Consider a set of R nodes from cloud-fog

defined as follows: The collection of processors m

encompassing both Cn and Fn in the system, 𝑅 = {𝐶𝑛 ∪
 𝐹𝑛} is formulated as:

𝑅 = {𝑅1, 𝑅2, 𝑅3, … , 𝑅𝑚} (6)

where Rj denotes the virtual processing for the jth virtual

node. Each Ti is assigned to only one virtual node Rj, that

denoted by 𝑇𝑖
𝑗
. Every R node can be allocated a set of tasks

𝑅𝑗(𝑗 = 1, 2, 3, … , 𝑚) as illustrated in the following:

𝑅𝑗
𝑇 = {𝑇𝑥

𝑗
, 𝑇𝑦

𝑗
,×××, 𝑇𝑧

𝑗
} (7)

In general, cloud nodes tend to be more powerful

compared to fog nodes. However, utilizing cloud nodes

typically incurs higher costs in comparison.

Our proposed model consists of a limited number of 𝑅𝑗

which are heterogeneous virtual nodes, each of which has

a different ability to run a given task.

The time taken for task i to execute on 𝑅𝑗 is represented

as execution time ETij and can be determined using the

following mathematical expression [23]:

ET𝑖𝑗 =
𝐿(T𝑖)

𝑁PEj × RMIPS𝑗

 (8)

where 𝐿(T𝑖) is the task length measured in MI, 𝑁PEj refers

to the count of processing elements in 𝑅, and RMIPS𝑗
 is the

processing speed of R, expressed in million-instructions-

per-second (MIPS).

Eq. (9) computes total execution time TET𝑅𝑗
for

executing set of tasks in 𝑅𝑗:

TET𝑅𝑗
= ∑ ET𝑖𝑗

𝑛
𝑖=0 (9)

Let’s consider that makespan refers to the total time

needed to finish a set of tasks on 𝑅𝑗. The makespan can be

calculated using the following [24]:

Makespan = Max1≤𝑗≤𝑚[TET𝑅𝑗
] (10)

The Cost(𝑇𝑖
𝑗
) can be defined as the total cost associated

with completing the 𝑇𝑖
𝑗
 on 𝑅𝑗. This cost encompasses the

processing cost 𝐶𝑝(𝑇𝑖
𝑗
), memory required cost 𝐶𝑚(𝑇𝑖

𝑗
),

and bandwidth usage cost 𝐶𝐵(𝑇𝑖
𝑗
).

The calculation of Cost(𝑇𝑖
𝑗
) is described as follows [11]:

Cost(𝑇𝑖
𝑗
) = 𝐶𝑝(𝑇𝑖

𝑗
) + 𝐶𝑚(𝑇𝑖

𝑗
) + 𝐶𝐵(𝑇𝑖

𝑗
) (11)

The three costs mentioned above are defined as follows:

𝐶𝑝(𝑇𝑖
𝑗
) = CostCPU−𝑗 × ET𝑖𝑗 (12)

𝐶𝑚(𝑇𝑖
𝑗
) = Cost𝑀−𝑗 × Memory (𝑇𝑖

𝑗
) (13)

𝐶𝐵(𝑇𝑖
𝑗
) = Cost𝐵−𝑗 × Bandwidth(𝑇𝑖

𝑗
) (14)

where CostCPU−𝑗 is the cost associated with utilizing the

CPU for task execution on node 𝑅𝑗 within a specific time,

Cost𝑀−𝑗 represents the memory cost which usage in node

Rj, Memory (𝑇𝑖
𝑗
) denotes how much memory Ti consumed

in node Rj, Cost𝐵−𝑗 refers to the cost of utilizing

bandwidth, and bandwidth (𝑇𝑖
𝑗
) represents the required

bandwidth for transferring Ti to be executed on Rj.
The total cost of executing all tasks within a cloud-fog

environment can be expressed in the following:

TotalCost = ∑  
𝑇

𝑖
𝑗

∈𝑇node Cost (𝑇𝑖
𝑗
) (15)

Table I presents the essential symbols, terms, and

concepts used in the proposed scheduling model.

TABLE I: PSO-OL NOTATIONS USED

Notation Definition

Cloudlet Task representation in CloudSim.

VMs Virtual-Machines.

MI Million-Instructions data of cloudlet.

MIPS Million-Instructions Per Second.

𝑁PE 𝑗 Processing elements number in VM.

RMIPS𝑗
 Speeds of VM.

VMid The identification number of VM.

𝑇id Identification number of cloudlet.

𝑆𝑇
Number of tasks that have been

completed successfully.
𝐶𝑛 Cloud virtual nodes.

𝐹𝑛 Fog virtual nodes.

brokerC−F Cloud-Fog broker.

𝑈IoT/MCS IoT/MCS users

𝑡 Iteration.

Pn Population or individuals number.

𝑃dim Particle dimension.

𝑀iter Maximum iteration.

𝑃sim Similarity factor between particles
𝑑af Dynamic adjustment factor.

cr Crossover rate.

ⓧ crossover operation

C. Particle Encoding for Task Scheduling

Adhering to the core concept of population based

algorithms, each particle within the population is

characterized as a scheduling solution. In PSO-OL a

particles position is represented as an array, indicating the

assignment of Ti to Rj. The length of this array determined

by the particle dimension 𝑃dim, relates to the overall count

of tasks as illustrated in Fig. 4.

Every element contains the Rj index for executing its

corresponding Ti. For instance, if position[𝑃dim]=5, it

implies that task Ti will be executed on R5. The particles

minimum and maximum positions range from 1 to the total

number of 𝑅 that is m, respectively.

Fig. 4. Particles encoding representation for proposed task scheduling

problem.

The particle velocity is represented as an array of the

same size as the position array. Within each iteration, each

element includes the result of a velocity update equation.

The result is then utilized to adjust the index of a VM in

order to execute the associated task.

In a scenario where 𝑛 tasks need to be scheduled across

𝑚 nodes in the cloud-fog, will be Pn particle with a

dimension of 𝑛 that means 𝑃dim. To represent the position

information of each particle in the particle swarm, use the

following:

𝑥𝑖 = {𝑥𝑖1, 𝑥𝑖2 , … , 𝑥𝑖𝑛}; ∀1 ≤ 𝑖 ≤ 𝑚 (16)

This indicates that every 𝑥𝑖 describes a feasible solution

for the PSO method, whereas 𝑥𝑖1 represents that the ith

task is allocated to the resource 𝑥𝑖1 . The velocity of

particles is defined as:

𝑣𝑖 = {𝑣𝑖1, 𝑣𝑖2 , … , 𝑣𝑖𝑛}; ∀1 ≤ 𝑖 ≤ 𝑚 (17)

Assuming that there are eight particles in the population

and that the information of particle position is represented

as (5, 7, 3, 4, 2, 1, 2, 6, 4), this means that the particle has

nine dimensions, Table II. displays the task allocation to

resources as a particle.

TABLE II: A SCHEME FOR ASSIGNING TASKS

Tasks

(dimensions)
1 2 3 4 5 6 7 8 9

Resources

(VMs)
5 7 3 4 2 1 2 6 4

D. Fitness Function

The fitness function calculates the optimal value for

each individual element referred to as personal best fitness

𝐹𝑏𝑘

𝑡 as in (18) in the case of a minimization or maximization

problem. The fitness value among whole individuals is

denoted as the global best fitness 𝑃Gb
𝑡 as in (19).

𝐹𝑏𝑘

𝑡 = min(𝐹𝑏𝑘
) (18)

𝑃Gb
𝑡 = min(𝐹𝑏𝑘

𝑡) (19)

In this paper, we formulated a fitness function that

incorporates two important metrics as in Eq. (20):

𝐹(𝑥) = 𝛼 × Makespan + 𝛽(
1

RU
) (20)

where the fitness function 𝐹(𝑥) = Minimization

(Objective), 𝛽 = 1 − 𝛼 and

RU =
∑ 𝐸𝑇𝑗

𝑚
𝑗=1

Makespan × m
 (21)

This function aims to achieve a balance between the

normalized makespan and resource utilization of a fog-

cloud devices trade-off. In this paper, we transformed the

problem into a single-objective optimization problem by

means of a weighted sum approach.

The primary goal of the algorithm introduced in this

paper is to allocate resources to tasks efficiently, aiming to

maximize resource utilization and minimize the makespan

(i.e., Maximize RU; Minimize Makespan).

𝛼 and 𝛽 are the trade-off coefficients between the

makespan and resource utilization and α + β = 1. When the

value of α is greater than 0.5, this means the β is less than

0.5 and the task assignment approach places a priority on

decreasing makespan over overall resource utilization.

Conversely, if α is less than 0.5, makespan becomes less

significant compared to resource utilization. When both

makespan and resource utilization are given equal priority,

the value of α is set to 0.5 in this work.

VI. PROPOSED PSO OPTIMIZED LEADER (PSO-OL)

In traditional PSO, a significant challenge arises. The

concern pertains to the potential premature convergence

due to all particles gravitating toward the swarm leader and

if it becomes stuck in a local optimum, all the particles will

move closer to it, thus, the PSO may easily get trapped in

premature convergence. The diversity of the swarm as it

moves across the solution space has an impact on the

solution quality. High particle diversity in the early stage

is sought for the greatest solution space to locate a good

seed of search. All particles in PSO are naturally drawn

towards the swarm leader 𝑃Gb. Therefore, having a high-

quality leader can greatly enhance the efficiency of the

search process, much like how a competent leader in a

society or organization can lead to greater success. PSO-

OL represents a new variant of PSO that distinguishes

itself by continually enhancing the swarm leader at every

iteration of the search process.

The PSO technique is enhanced by incorporating four

primary modifications in the proposed method PSO-OL.

Firstly, a method to prevent the similarity between

particles to get diversity in initial stage is introduced.

Secondly, a strategy to select a particle from the population

in each iteration, namely, Farthest-best (Fb), is introduced

based on selecting a particle to use with 𝑃Gb to find a new

enhanced leader after applying the proposed new crossover

on them, which considers both the current fitness value of

P
o

p
u

la
ti

o
n

Particle 1

Particle 2

Particle 3

Particle N

.

.

.

. . .

Position []

Velocity
[]

Size of tasks Dimension

V: from velocity formula

Index of VM

)}

)

particle and their distance to 𝑃Gb within the present swarm,

and we designed a new dynamic adjustment factor to

control on the selection of particle. This strategy balances

an exploration by giving a distance a high impact in early

iterations and works on enhancing the exploitation by a

focus on fitness in the latest iterations. Third, when all

particles converge to one position, the search process no

longer evolves. To overcome this challenge, in this paper,

we focus on utilizing information from the second-best

particle in addition to 𝑃𝐺𝑏 by using the crossover between

them to find an optimized leader that has an updated

position vector that will combine information from the

Gbest and the second-Gbest. Finally, proposed a new

crossover operator: In PSO-OL, a successive crossover

strategy is applied to get a better new swarm leader at each

iteration based 𝑃Gb, Fb and second-Gbest. After finding the

Fb and second-Gbest particles, the proposed crossover is

applied to generate offspring then choose the best one to

become as leader in each iteration.

This process iterates until a predefined termination

condition is met, which may involve reaching an

acceptable solution or exceeding the maximum iteration

limit. The best solution discovered during these iterations

is then presented as the final result.

A. Proposed Initial Population Method PPIS

The algorithm convergence rate is affected by

population diversity which can be achieved in the initial

stage. The primary phase in the optimization process of

metaheuristic techniques involves establishing the initial

population. To initialize the swarm, a vector of P particles

is generated within a number of population 𝑃𝑛. For every

particle, the initial position and velocity are randomly

generated in standard PSO.

In this paper, the population is created randomly, and

then apply the proposed method to Prevent Particle Index

Similarity (PPIS). After the generation of all particles, start

checking the indexes for instance, particle 𝑃2 with the

corresponding indexes of 𝑃1 for all genes in the particle if

the similarity factor 𝑃sim is greater than 50%, then the

particle is rejected. Otherwise, the replacement mechanism

will apply as in (22). This means examining each

individual with the previous one. As for setting the 𝑃sim

to 50%, it is for the purpose of reducing the number of

replacements.

Replacing is used to achieve diversity for mapping VMs

in the initial phase. This means if the index in particle 𝑃2

is 𝑋𝑖, then should be not particle 𝑃1 index is the same value

in 𝑋𝑖, if is same index value is replaced with 𝑋𝑖+1 value as

shown in Fig. 5, and Algorithm 2.

𝑃𝑖+1 = {
Reject; if 𝑃sim > 50%
Accepte; replace as: new 𝑋𝑖 = 𝑋𝑖+1

 (22)

The position of every particle is assigned to its related

local best solution 𝑃𝑏𝑘

 . The lowest value of 𝐹𝑏𝑘

𝑡 among

entire particles is set to the FGb of the population.

Furthermore, the essential parameters of PSO are defined,

including the inertia weight w, learning factors c1, c2, and

the random variables within the range [0,1]. Moreover, the

rand() is the random function to generate random numbers

∈ [0,1], and Miter defines the maximum iteration number.

Subsequently, the fitness value of whole particles is

calculated using (20) to obtain the fitness for each particle.

Fig. 5. The proposed initial population method PPIS example.

B. Farthest-Best Particle Mechanism (FbPM)

If the entire population has already converged to a small

area, easy to trap in a local optimum, in this case, we

introduced another particle in the search space called

Farthest-best (Fb). Fb is the farthest distance from 𝑃Gb with

good fitness and can explore another region and avoid

repeated searching in the subspace that the Gbest has

already searched.

In this strategy, the 𝑃Gbindividual selects one particle in

each iteration from the population that is Fb which is

determined by fitness value and the farthest distance value

between 𝑃Gb and each particle in population. This paper

utilizes the Euclidean distance difference to find Fb

particle. Eqs. (23) and (24) represent the 𝑃Gb and Fb

information respectively.

When determining the 𝐹Gb and updating the fitness of

each particle in population, then, calculated the Euclidean

5 2 4 8 6 0 1 9 11

1 5 9 1 6 2 8 10 3

New
1 5 9 1 2 6 8 10 3

< 50%

Algorithm 2: Prevent particle index similarity PPIS in the

initial population.

 Input: 𝑃𝑛, 𝑃dim, k=0.

 Output: Dissimilar individuals in the population.

1: Initialize position and velocity randomly, Rand-F ∈

(0, m).

int [][] particle = generate Pn particles with 𝑃dim∈

Rand-F [𝑃𝑛][𝑃dim];

 /*Apply PSPI procedures*/

2: for i=1 to Pn do

3: for j = 0 to 𝑃dim do

4: if (particle[i][j] == particles[i1][j]) then

5: k++

6: end

7: if (k > 𝑃dim/2) then /*means k >50%*/

8: Reject particle[i]

Generate new random individual
9: end

10: else

11: for j = 0 to 𝑃dim do

12: if (particles[i][j] = = particles[i1][j]) then

13: particles[i][j] = particles[i][j+1]

14: end

15: end

16: end

17: end

 Note: in the same way repeat steps from 2 to 17 to

check all particles.

distance 𝐷(𝑃Gb − 𝑃𝑖) between the 𝑃Gband ith individual as

stated in Eq. (25).

Gb1 = {𝑃Gb, 𝐹Gb}, ∀ 1 < 𝑃Gb < 𝑚 (23)

𝐹𝑏 = {𝑃Fb
, 𝐹Fb

}, ∀ 1 < 𝑃Fb
< 𝑚 (24)

where Gb1: a global best particle. {position, fitness}, 𝑃Fb:

Farthest-best position, and 𝐹Fb: Farthest-best fitness.

(𝐷𝑃Gb−𝑃𝑖)

= √(𝑃Gb
1 − 𝑥𝑖

1)
2

+ (𝑃Gb
2 − 𝑥𝑖

2)
2

+. . . +(𝑃
Gb

𝑃dim − 𝑥
𝑖

𝑃dim)
2

∀ 0 < 𝑖 < 𝑃𝑛 (25)

The vector of distance (𝐃𝑃Gb−𝐏𝑖) and the vector of

fitness FP which are generated in each iteration for

candidates solution of global best and particles as given in

(26) and (27).

(𝐃𝑃Gb−𝐏) = [𝐷𝑃Gb−𝑃1, 𝐷𝑃Gb−𝑃2 , … , 𝐷𝑃Gb−𝑃𝑃𝑛] (26)

𝐅𝑃
= [FP1

, FP2
, … , F𝑃𝑛

] (27)

This method calculates the distance only from 𝑃Gb to

particles, which reduces the complexity of the calculation

when compared to a method that computes the distance

between each particle and all other particles in the

population.

The combined rating based fitness-distance (𝑅fd) of

every particle is calculated, and select particle depending

on which one receives the highest rating.

𝑅fdrepresents the index of a chosen example, created

through the implementation of the 𝑅fd strategy. Initially,

the fitness and distance vectors of data are normalized as

follows:

𝑁(𝐃𝑃Gb−𝐏𝑖)
=

𝐷𝑃Gb
−𝑃𝑖 −min(𝐃𝐏𝐆𝐛−𝐏)

max(𝐃𝑃Gb−𝐏)−min(𝑫𝑃Gb−𝑷)
 (28)

𝑁(𝐅𝑃𝑖
) =

𝐹𝑃𝑖
−min(𝐅𝑃)

max(𝐅𝑃)−min(𝐅𝑃)
 (29)

where min(), and the max() represent the minimum and

maximum values within vector 𝐅𝑃
 and vector 𝐃𝑃Gb−𝐏 ,

respectively.

Now we designed a new dynamic adjustment factor 𝑑af

as in (30)

𝑑af(𝑡 + 1) = 𝑑af(𝑡) + (
0.5

𝑀iter
) (30)

𝑑af(𝑡): initial value is 0.5. where 0 ≤ t ≤ 𝑀iter

Equation (31) can be used to compute the 𝑅fd of

particles with 𝑃Gb, resulting in a symmetric matrix. Then,

the individual with the maximum rating M𝑅fd within the

matrix is selected, as specified in Eq. (32).

𝑅fd = 𝑑af(1 − 𝑁(𝐅𝐏𝐢)
) + (1 − 𝑑af)𝑁(𝐃𝑃Gb−𝑃𝑖) (31)

M-𝑅fd = max (𝑅fd) (32)

By dynamically adjusting the weight of 𝑑af . The 𝑑af

value starts with a small value of 0.5, and after increasing

the iteration it will gradually increase until it reaches 1 at

the last iteration 𝑀iter, and then there will be no effect on

the distance, and this is good for focusing on the diversity

when the small value (enhancing exploration within the

population). When a large value, it focuses on fitness to

enhance exploitation and in the end, when the value

becomes equal to 1, the focus becomes entirely on fitness,

meaning that the algorithm emphasizes exploitation to

search for the best solutions as shown in Table III.

TABLE III: EFFECTIVE OF 𝑑𝑎𝑓 VALUE

𝒅𝐚𝐟 Value
Probability of

focusing on
fitness

Probability of
focusing on

diversity

0.5
𝑑af(𝑡)

Equal Equal

.

.

.

.

.

.

.

.

.

𝑑af(𝑀iter/2) High Low

.

.
.
.

.

.

1
𝑑af(𝑀iter)

100% 0%

C. Second Global-Best Particle (SGbP)

PSO stands as a population-centered optimization

technique that strives to strike a balance between

exploration which involves seeking out new promising

areas, and exploitation, which focuses on refining the best-

discovered solution. The best particle represents the

current global best solution, while the second-best particle

may represent a different solution that is also quite good.

Nonetheless, if a particle exclusively acquires

knowledge from the farthest individual, it will exhibit

erratic oscillations, making it challenging to attain an

improved solution. Consequently, a learning direction

from the second-best particle is introduced to ensure that

particles do not significantly diverge during exploration.

The concept of using both the 𝑃Gb and a second-best

with the crossover process in swarm intelligence and

optimization algorithms represents a new approach to

enhance the search for optimal solution. This innovative

strategy leverages the strengths of two distinct leaders

within a population of agents, allowing for more diverse

exploration and potentially leading to the discovery of

even better solutions.

We need to determine the fitness and positions of first

(Gb1) (Gb1) as in (23) and second-best (𝐺𝑏2) as in (33) and

Fig. 6.

𝐺𝑏2 = {𝑃Gb𝑠 , 𝐹Gb𝑠}, ∀ 1 < 𝑃Gb𝑠 < 𝑚 and 𝐹Gb𝑠 > 𝐹Gb

(33)

𝐺𝑏2 : is a second global best particle with { 𝑃Gb𝑠 as

position, and 𝐹Gb𝑠 as fitness}.

Fig. 6. Determine the Gb1 and Gb2.

… …

P
o
p
u

la
ti

o
n

Particle Particle Fitness

… …

Fitness

A
sc

e
n

d
in

g

Position

,

D. Proposed Crossover Operator DCW

The crossover is considered one of the important GA

operators [25]. The crossover operator aims to generate

new particle by changing the position inside two particles.

The crossover operator can improve the sharing of

information between particles and prevent the early

convergence of a swarm. The new crossover mechanism is

proposed in this paper to get an optimized leader.

In this work, a Dynamic Crossover Window (DCW) is

proposed as shown in Algorithm 3 and Fig. 7 with a full

example of the parents that inherit the quality genes in

offspring. The crossover operation depends on 𝑑af value as

in subsection (B) and (30). We need to define the dynamic

factor (𝐷fa) as in (34) based value of 𝑑af that starts from

0.5 to 1 in the last iteration.

𝐷fa = 1 − 𝑑af𝑃
dim, ∀ 0.5 < 𝑑af ≤ 1 (34)

The 1 − 𝑑af is for starting the crossover segment small

in early iteration and increases gradually. This is because

in the initial iterations, the value of 𝑑af is impact on the

distance, and thus there will be less focus on fitness.

Therefore, we need to reduce the window so that the genes

are not changed significantly and the quality of the particle

is maintained, while when the iterations progress, the

choice of the Fb particle becomes completely dependent on

the fitness value, and in this way a good particle is chosen.

That’s why we increase the window of change. The limit

lm as in (35) is to find the difference between 𝑃dimand 𝐷fa

to use in (36) to find crossover segment Cs. Cs is

determines how much the size of window.

𝑙𝑚 = 𝑃dim − 𝐷fa (35)

𝐶𝑠 = 2𝑙𝑚 − 𝑃dim (36)

Equation (37) is to determine the range of start Cs, where

𝑆rp is represent the start point in range [0, 𝐻𝑟] randomly as

in (38):

𝐻𝑟 = | 𝑃dim − 𝐶𝑠 | (37)

𝑆rp = rand [0, 𝐻𝑟] (38)

While the end crossover segment 𝐸cs in (39) is to

determine the end of Cs. The gens between 𝑆rp and Ecs are

selected based uniform crossover with rate (cr) (which is

set to 0.8) between two particles while the remaining genes

(out of the range) are select from global best particles, the

DCW is applied on 𝑃Fb and 𝑃Gb𝑠 with 𝑃Gb in the two

stages.

𝐸cs = [𝑆rp + 𝐶𝑠] (39)

So then, Cs in interval [Srp, Ecs].

After getting a Fb particle, if 𝐹Fb is better than 𝐹Gb, then

𝑃Fb takes the position of 𝑃Gb.

However, if it is not a better, the crossover applied

between 𝑃Fb and 𝑃Gb particles to find a new particle we

called 𝐶GbF as in (40). If the 𝐹(𝐶GbF) is better than 𝐹Gb,

then 𝐶GbF takes the position of 𝑃Gb.

𝐶GbF=𝑃Fbⓧ𝑃Gb (40)

where ⓧ is a crossover operation.

If 𝐹(𝐶GbF) is not better than 𝐹Gb, the crossover applied

between 𝑃Gb𝑠 and 𝑃Gb particles as in Eq. (41).

𝐶Gbs=𝑃Gb𝑠ⓧ𝑃Gb (41)

If the 𝐹(𝐶Gbs) is better than 𝐹Gb , then 𝐶Gbs takes the

position of 𝑃Gb. Otherwise it will update velocity based on

𝑃Gb.

 Illustrative Example of DCW

Consider number of cloudlets is 100, total number of

VMs {𝐶𝑛+𝐹𝑛} is 15 and number of iterations is set to 150,

then when 1 − 𝑑𝑎𝑓 is 0.4833333333 in iteration 4 where

𝑑af > 0.5, the 𝐷fa will be 48, 𝑙𝑚 is 52, 𝐶𝑠 is 4, 𝐻𝑟 is 96, 𝑆rp

is in range [0, 96] random, then 𝑆rp is 64 select randomly

within range and 𝐸cs is 68.

Fig. 7. Illustrative example of proposed DCW.

Algorithm 3: Proposed crossover operator DCW

 Input: 𝐺𝑏1 = {𝑃Gb, 𝐹Gb} , 𝐹𝑏 = {𝑃Fb , 𝐹Fb } , 𝐺𝑏2 =

{𝑃Gb𝑠 , 𝐹Gb𝑠}, cr.
 Output: Enhanced leader (particle) 𝐶GbF and 𝐶Gbs

1: Find dynamic factor 𝐷fa based value of 𝑑af as in (34)

2: Find The 𝑙𝑚 as in (35) is to find the deference between

𝑃dim and 𝐷fa.

3: Calculate 𝐶𝑠 to determine size of window based (36)

4: Determine the range of start 𝐶𝑠 , where 𝑆rp is represent

the start point in range [0, 𝐻𝑟] based (37) and (38)

5: Determine the 𝐸cs using (39)

6: 𝐶GbF = Array with size 𝑃dim

7: 𝐶Gbs = Array with size 𝑃dim

8: for j = 0 to 𝑃dim1 do

9: if j ≥ 𝑆rp and j < 𝐸cs then

10: if random ∈ (0, 1) < cr then

11: 𝐶GbF[j]=𝑃Gb[j]

12: end

13: else

14: 𝐶GbF[j]=𝑃Fb [j]

15: end

16: else

17: 𝐶GbF[j]=𝑃Gb[j]

18: end

 Note: in the same way repeat steps from 7 to 18 to get

𝐶Gbs

4 2 3 5 7 4 9 11 14 0

= 4

= 64 = 68

is 0.4833333333

2 0 8 9 14 11 12 10 13 1

= 4

= 64 = 68

4 2 3 (0.3) 5 (0.8) 14 (0.4) 4 (0.9) 12 11 14 0

or

2nd best

E. Complete Model for PSO-OL Scheduler

The flowchart of the proposed scheduling approach

PSO-OL is presented in Fig. 8 and the pseudocode is

shown in Algorithm 4. Firstly, the particles are initialized

according to the proposed PPIS strategy as in subsection

(A). Then, find Fb particle based 𝑅fd with 𝑑af as in

subsection (B), and then find the second-Gbest as in

subsection (C). The proposed crossover DCW is used with

these two particles to generate an optimized leader in each

iteration.

Fig. 8. Flowchart of the proposed PSO-OL.

Algorithm 4: Proposed PSO-OL scheduler algorithm

 Input: 𝑇: List of tasks, 𝑇 = {𝑇1, 𝑇2, 𝑇3, … , 𝑇𝑛} with its

{ 𝐿(T𝑖) in MI, input/output file sizes}, 𝑅: List of

cloud-fog nodes, 𝑅 = {𝑅1, 𝑅2, 𝑅3, … , 𝑅𝑚} with its

{RMIPS𝑗
, 𝑁𝑃𝐸 𝑗 RAM, BW}, LB, UB, 𝑃𝑛, 𝑀iter,

𝜔, 𝑐1, 𝑐2.

 Output: Best mapping of 𝑇 on 𝑅.

1: for k = 1 to 𝑃𝑛 do

2: Initialize a population 𝑃 with velocity 𝑉𝑘 and

position 𝑋𝑘 of the kth particle within the bounds

using PPIS function as in Algorithm 2.

3: Compute𝐹(𝑥)based (20) and update personal bests

and swarm best.

4: Set best position of particle as 𝑃𝑏𝑘

𝑡

5: Select best particle among swarm as leader 𝑃Gb

6: Select second best particle among swarm 𝑃Gb𝑠

7: end

t=1

8: while (t <= 𝑀iter) do

9: for k = 1 to 𝑃𝑛 do

10: Compute new velocity using 𝑉𝑘
𝑡+1 = 𝑤𝑉𝑘

𝑡 +

𝑐1𝑟1(𝑃𝑏𝑘

𝑡 − 𝑋𝑘
𝑡) + 𝑐2𝑟2(𝑃Gb

𝑡 − 𝑋𝑘
𝑡)

11: if 𝑉𝑘
𝑡+1 not in range then

12: Put it in range according to LB and UB

13: end

14: Compute new position using 𝑋𝑘
𝑡+1 = 𝑋𝑘

𝑡 + 𝑉𝑘
𝑡+1

15: Evaluate fitness of all particles using 𝐹(𝑥) as per

(20)

16: if 𝐹(𝑋𝑘
𝑡+1) < 𝐹𝑏𝑘

𝑡 then

17: 𝑃𝑏𝑘

𝑡+1 = 𝑋𝑘
𝑡+1

18: 𝐹𝑏𝑘

𝑡+1 = 𝐹(𝑋𝑘
𝑡+1)

19: end

20: else

21: 𝑃𝑏𝑘

𝑡+1 = 𝑃𝑏𝑘

𝑡

22: end

23: if 𝐹𝑏𝑘

𝑡+1 < 𝐹Gb then

24: 𝑃Gb = 𝑃𝑏𝑘

𝑡+1

25: 𝐹Gb = 𝐹𝑏𝑘

𝑡+1

26: end

27: Find farthest-best Fb using farthest-best particle

mechanism (FbPM)

28: if 𝐹Fb < 𝐹Gb then

29: 𝑃Gb= 𝑃Fb

30: else

31: Apply crossover using DCW as in

Algorithm 3

𝐶GbF=𝑃Fbⓧ𝑃Gb

32: end

33: if F(𝐶GbF)<𝐹Gb then

34: 𝑃Gb = 𝐶GbF /*become 𝐶GbF as leader*/

35: else

36: 𝐶Gbs=𝑃𝐺𝑏𝑠ⓧ𝑃Gb

37: if F(𝐶Gbs)<𝐹Gb then

38: 𝑃Gb = 𝐶Gbs /*become 𝐶Gbs as leader*/

39: end

40: end

41: end

42: t++

43: end

 Continue the process until the termination condition is

met, which can occur when either the maximum

number of iterations is reached or the desired accuracy

level is achieved.

VII. PERFORMANCE METRICS

Four evaluation metrics that used to test and evaluate the

performance of the proposed MODEL-PSO in a cloud-fog

system. These metrics include makespan, cost, throughput,

and the Performance Improvement Ratio (PIR). It is

important to highlight that in the existing literature, most

researchers commonly rely on makespan or in some cases

Start

Initialization particle using PPIS function as in

algorithm 2.

Update positions and velocities of particles using:

Compute fitness function and update personal bests and

swarm best

Select best particle among swarm as leader

Select second best particle among swarm

Find the Farthest-best using Farthest-Best Particle Mechanism

(FbPM)

is < =
yes

no

=

F

<
=

=

F()

<

=

t <=

Output scheduling best solution

Inertia weight (w)

yes

End

yes

yes

no

no

no

cost as the primary measure to evaluate the effectiveness

of their algorithms. However, in the case of the PSO-OL

approach, the evaluation encompasses the following

metrics:

A. Makespan

Makespan is the primary objective and widely used

metric for evaluating the efficiency of scheduling in a

cloud-fog for IoT/MCS environment. It can be defined as

the completion time of the last executed task. A smaller

makespan indicates that the broker has effectively

allocated tasks to the appropriate VMs. The makespan is

mathematically represented as provided in Eq. (10).

B. Cost

The cost in cloud-fog task scheduling refers to the

expenses associated with processing a received task from

IoT/MCS users to the cloud is determined by factors such

as the demand cost for processing the incoming task,

which can be calculated based on the cost of utilizing the

CPU, memory expenses, and the cost incurred by

bandwidth consumption. Essentially, it reflects the

financial aspects of executing tasks efficiently within the

cloud-fog system. The cost of task execution when task 𝑇𝑖

runs on virtual machine 𝑅𝑗 can be computed using Eq. (11),

and the overall cost can be calculated using Eq. (15).

C. Throughput

The throughput in the context of cloud-fog task
scheduling refers to the rate at which tasks are processed
and completed within the Cloud-Fog. It measures the

efficiency of the scheduling system in terms of how many
tasks it can successfully execute in a given makespan.
Higher throughput indicates that the system can handle a
larger volume of tasks, improving overall performance and

responsiveness. Essentially, throughput is a critical metric
for evaluating the efficiency of task scheduling algorithms
in cloud-fog systems and is calculated as follows [26].

Throughput =
∑ 𝑆𝑇

Makespan
 (42)

where ST represents the count of tasks that have been

completed successfully.

D. Performance Improvement Ratio (PIR%)

The PIR metric is utilized to evaluate the effectiveness

of a PSO-OL approach by considering the reduction in

execution time. Consequently, it is regarded as an

important measure for evaluating the algorithm's

effectiveness. The mathematical calculation of the PIR

metric is presented as follows [27].

PIR% =
Makespan𝑥 − Makespan𝑃

Makespan𝑥
× 100% (43)

where Makespan
𝑥

 is the makespan obtained from xth

algorithm and Makespan
𝑃

 is the makespan obtained from

the proposed algorithm.

VIII. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, a set of experiments was performed in

order to evaluate the effectiveness of the PSO-OL

scheduling algorithm in comparison to state-of-the-art

algorithms, both heuristics and metaheuristics. The

assessment covered several aspects, including makespan,

total execution cost, throughput, and PIR.

A. Experimental Setup

In order to evaluate the effectiveness of the proposed

approach and analyze the results, CloudSim is an open-

source framework tool that was developed in Java [28, 29]

and is used for the purpose of establishing and simulation

an integrated cloud-fog environment, encompassing cloud

and fog nodes, along with a constrained number of service

requests pertaining to IoT applications. All experiments

were conducted on a single machine with the

characteristics displayed in Table IV.

TABLE IV: SIMULATION ENVIRONMENT ATTRIBUTES

Variable Characteristics

Simulator version CloudSim V-5.0

JDK 11

Machine characteristics
Intel(R)-Core i7-10750 H, CPU (2.6
GHz), (2.59) GHz.

16 GB Memory and HD one TB

The cloud-fog system is accountable for executing all
requests from IoT/MCS users. Cloud and fog nodes vary
in terms of their processing capabilities and resource usage
costs. We assumed regarding the processing capabilities of
each node which is represented by their processing rate
measured in MIPS. Additionally, we considered factors
like CPU, RAM, and bandwidth usage costs.

In the fog layer, nodes like routers, gateways,
workstations, or personal computers have limited
processing capacity. On the other hand, in the cloud layer,
servers or virtual machines located in high-performance
data centers handle tasks. Consequently, cloud nodes have
significantly higher processing speeds compared to fog
nodes. In contrast, utilizing resources in the cloud is more
expensive compared to the fog. These expenses are
quantified using Grid Dollars (G$), a virtual currency used
in the simulation to represent real-world monetary costs.

B. Analysis of the Experimental Results

In this subsection, we present the experiments
performed to evaluate the PSO-OL scheduling method and
provide an analysis of the obtained results in two scenarios.

 Scenario 1: Effective of PSO-OL in Optimize Leader

To evaluate the effectiveness of the proposed method
PSO-OL in finding the best leader due to the fact that all
particles are attracted toward the swarm leader. So, having
a high-quality leader can make the search process more
efficient, and this is reflected in improving the fitness
function and thus improving the overall scheduling system.
In this case, we tried 400 tasks and 25 VMs. The number
of particles is 100 and the number of total iterations is 250
as shown in Table V. The results for 10 runs show the
effectiveness of the proposed method in finding the best
leader in each iteration compared to the traditional PSO
algorithm as shown in Fig. 9, where in each run the number
of optimized leaders is illustrated in the y-axis. It is clear
that the proposed method for finding the best leader is very
effective, as it overcame the traditional PSO algorithm in

finding a leader with a better fitness function, as in Fig. 10,
which shows the percentage of improvement.

TABLE V: EFFECTIVENESS TEST ATTRIBUTES

Variable Parameters

No. of tasks 400

No. of VMs 25

No. of particles 100

Total iterations 250

No. of run 10

Fig. 9. The optimized leaders.

Fig. 10. The percentage of leaders improvement.

 Scenario 2: Cloud-fog task scheduling
To evaluate the effectiveness of the PSO-OL algorithm,

we conducted comparisons with existing methods from the

literature such as Evolutionary-Task Scheduling

algorithm)ETS([17], A Time Cost aware Scheduling

(TCaS), Modified Particle Swarm Optimization (MPSO)

and Round-Robin (RR) [13] and Bee Life Algorithm

(BLA) [30]. Table VI and Table VII illustrate the cloud

and fog properties respectively.

TABLE VI: CLOUD NODES ATTRIBUTES

Variable Cloud parameters Unit

Nodes number 3 node

CPU speed [3000, 5000] MIPS

The cost of CPU utilization [0.7–1.0] G$/s

cost for Memory utilization [0.02–0.05] G$/MB

cost for Bandwidth utilization [0.05–0.1] G$/MB

TABLE VII: FOG NODES ATTRIBUTES

Variable Fog parameters Unit

Nodes number 10 node

CPU speed [500–1500] MIPS

The cost of CPU utilization [0.1–0.4] G$ /s

The cost of Memory utilization [0.01–0.02] G$ /MB

The cost of Bandwidth

utilization
[0.01–0.02] G$MB

For simulation, a total of 11 datasets were generated,

with varying number of tasks varying from 40 to 500 tasks.

These tasks within the datasets were created using random

generation, and their attributes were determined in

accordance with the specifications shown in Table VIII.

Table IX presents algorithm attributes.

TABLE VIII: IOT/MCS TASKS ATTRIBUTES

Variable Parameters Unit

Length [1000–100000] MI
Memory required [50–200] MB
Size of input file [10–100] MB

Size of output file [10–100] MB

TABLE IX: ALGORITHMS ATTRIBUTES.

Variable BLA TCaS MPSO ETC PSO-OL

Run count 30 30 30 10 30

Population

size (ℕ)

queen 1

100 100 100 100

drones

(D)

30

Workers

(W)

69

Crossover rate (𝛼) 90% 90% - 0.5 0.8

Mutation-rate (𝛾) 0.01 0.01 - 0.1, 0.3 -

c1, c2, w - -

c1 = c2 =
1.5

w = 0.9–

0.1

-
c1 = c2 = 1.5

w = 0.9–0.1

Iterations number 500 500 500 500 500

In this scenario, we have preserved a fixed number of

VMs,10 as cloud, and 3 as fog), while the processing

capacity required to complete each user-assigned task may

vary. We generated a set of tasks randomly, with the

numbers of tasks ranging from 40 to 200, increasing in

intervals of 40, and from 200 to 500 increasing in intervals

of 50 using a random dataset.

For the purpose of evaluating the performance of the

proposed PSO-OL approach in this scenario, we have

taken multiple metrics into consideration. These metrics

are makespan, Cost, throughput, and performance

improvement ratio.

Fig. 11 illustrates the result of the comparison of the

proposed approach PSO-OL in the makespan measure.

There was a total of 13 VMs utilized in this experiment,

and the system was received 40, 80, 120, 160, 200, 250,

300, 350, 400, 450, and 500 of IoT/MCS tasks. After

testing the random datasets over 500 generations and in

order to mitigate the influence of uncertain factors on the

experimental results, every experiment is carried out 30

times, and take the average to provide a more reliable

assessment. The experimental results demonstrate that the

PSO-OL approach achieved a more notable reduction in

the average makespan when compared to the RR, BLA,

MPSO, ETS, and TCaS.

In our experiments, we set a value of 𝛼 and 𝛽 to 0.5,

meaning that makespan and resource utilization have the

same importance in the fitness function. The PSO-OL

approach achieves the shortest makespan by optimizing

0

5

10

15

20

25

30

35

40

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

N
u

m
b

er
 o

f
it

er
at

io
n

s
as

 l
ea

d
er

Standard PSO leader CGbF leader CGbs leader

15%

40%

45% Standard PSO leader

CGbF leader

CGbs leader

the time needed for task completion time. This, in turn,

leads to a higher level of performance for the PSO-OL

approach, which is achieved by efficiently mapping tasks

onto VMs. We conclude, that the PSO-OL demonstrates a

significant advantage over all other algorithms when

applied to large datasets. As a result, the algorithm's

superiority in terms of makespan becomes evident,

especially in scenarios involving limited resources and

large task datasets.

Fig. 11. Comparison results of makespan in scenario 2.

From Fig. 12, it can be concluded that the PSO-OL

approach showed remarkable performance from the

makespan perspective on each dataset indicating less

execution time, therefore, this leads to the whole cost being

significantly less in the PSO-OL approach than in

comparison algorithms. For instance, the cost of RR, BLA,

MPSO, and TCaS was 63026 G$, 62468 G$, 61090 G$,

and 63750 G$, while that of the PSO-OL approach was

53987 G$ for the 500 tasks. As the task count decreased,

also there was a reduction in the overall cost of the

algorithms. For instance, the overall cost of the RR, BLA,

MPSO, TCaS, and PSO-OL was 18664 G$, 18324 G$,

17838 G$, 19043 G$, 16562 G$, respectively, for the 250

tasks. The primary factor contributing to cost reduction is

the increased utilization of fog nodes for task execution, as

opposed to relying heavily on cloud nodes. This cost-

saving advantage stems from the inherently lower cost of

using fog resources compared to cloud resources.

Consequently, this approach lowers the expenses

associated with crowdsensing users requesting cloud-fog

services.

Fig. 12. Comparison results of cost in Scenario 2.

Fig. 13 illustrates a comparison of throughput achieved

by the PSO-OL algorithm, alongside RR, BLA, MPSO,

ETS, and TCaS algorithms, using a synthetic dataset. The

horizontal axis represents the number of IoT/MCS tasks,

while the vertical axis signifies the throughput parameter.

The simulation results demonstrate that the PSO-OL

algorithm outperformed all other algorithms in terms of

throughput. The experimental results displayed that the

PSO-OL algorithm achieves a better throughput 163.07%,

42.71%, 37.76%, 38.35%, and 13.29% when compared

with other algorithms (i.e., RR, BLA, MPSO, ETS, and

TCaS) in number of tasks 500. These results confirm the

PSO-OL algorithm is effectiveness and this indicates the

stability of the proposed method and concluded that the

proposed approach effectively balances the workload,

ensuring that no single server becomes overloaded.

Fig. 13. Comparison of throughput in Scenario 2.

The percentage of PIR for our approach PSO-OL

depending on makespan as it relates to the RR, BLA,

MPSO, ETS, and TCaS algorithm is presented in Fig. 14

for the random workload, the results demonstrate that the

PSO-OL approach produces 68.38–62.00, 46.62–29.92,

37.14–27.42, 44.69–27.69 and 13.48–11.71 makespan

time improvements over the RR, BLA, MPSO, ETS, and

TCaS respectively in case of task a 40 and 500.

In terms of the number of tasks that have been executed,

we find that the fog nodes execute a larger number of the

tasks received by them compared to the cloud nodes, and

this is good to think about introducing the concept of fog

with the cloud, which is reflected in a significant reduction

in the cost, because the costs of using fog VMs are cheaper

than the costs of using cloud VMs as shown in the Fig. 15.

The superior performance of PSO-OL in comparison to

other algorithms can be attributed to its ability to avoid

getting trapped in local optima. This is achieved through

the mentioned modifications which strengthened the

exploration and exploitation phases, enabling it to find

optimal solutions within a reasonable timeframe for task

scheduling.

Fig. 14. PIR (%) on makespan comparison in Scenario 2.

Fig. 15. Tasks executed in each layer for PSO-OL.

IX. CONCLUSIONS AND FUTURE WORKS

This paper proposed a new variant of PSO to address

task scheduling challenges in cloud-fog computing for

IoT/MCS applications. The cloud-fog broker in this work

was responsible for analyzing, estimating, and scheduling

all transmission requests generated from edge devices to

be executed within the cloud-fog system. The proposed

PSO-OL algorithm performed in the scheduling of tasks,

and the results indicate that the proposed algorithm

exhibits improved global search capability compared to the

traditional PSO algorithm. This enhancement helps

prevent the traditional PSO algorithm from getting trapped

in local optima. PSO-OL was proposed with the objective

of minimizing makespan, improve resource utilization and

increasing throughput to enhance QoS goals. To evaluate

the effectiveness of the proposed PSO-OL algorithm in

achieving these objectives, a simulation was conducted,

comparing its performance with that of existing state-of-

the-art algorithms. The results from the simulation

demonstrated that the proposed PSO-OL outperformed the

competing algorithms. This demonstrates its capability to

effectively manage the significant increases in request

generation from IoT devices and effectively allocate tasks

to resources. The proposed approach can also be applied in

areas other than task scheduling. As a future work, this

work can be enhanced by introducing machine learning

techniques in addition to using other optimization

techniques with PSO, also applied to real-world data sets.

CONFLICT OF INTEREST

The authors Abbas M. Ali Al-muqarm and Dr. Naseer

Ali Hussien declare there are no conflicts of interest.

AUTHOR CONTRIBUTIONS

Conceptualization, Naseer Ali Hussien, and Abbas M.

Ali Al-muqarm; the methodology, Abbas M. Ali Al-

muqarm; software, Abbas M. Ali Al-muqarm; wrote the

manuscript, Abbas M. Ali Al-muqarm; writing review and

editing, Abbas M. Ali Al-muqarm and Naseer Ali Hussien;

proofread the paper, Naseer Ali Hussien.

REFERENCES

[1] S. P. C. Rao and M. Sushama, “An IoT-Based Sensor Technology

for Improving Reliability and Power Quality in Smart Grid
Systems,” Int. J. Electr. Electron. Eng. Telecommun, vol. 12, no. 4,

July 2023. doi: 10.18178/ijeetc.12.4.264-271
[2] S. H. Supangkat, R. Ragajaya, and A. B. Setyadji, “Implementation

of digital geotwin-based mobile crowdsensing to support

monitoring system in smart city,” Sustainability, vol. 15, no. 5,

#3942, 2023.
[3] W. Liu, C. Li, A. Zheng, Z. Zheng, Z. Zhang, and Y. Xiao, “Fog

computing resource-scheduling strategy in IoT based on artificial

bee colony algorithm,” Electronics, vol. 12, no. 7, #1511, 2023.
[4] A. R. Kadhim and F. Rabee, “Deadline and cost aware dynamic task

scheduling in cloud computing based on stackelberg game.,” Int. J.

Intell. Eng. Syst., vol. 16, no.3, 2023 doi:
10.22266/ijies2023.0630.14.

[5] A. Khan, A. Abbas, H. A. Khattak, F. Rehman, I. U. Din, and S. Ali,

“Effective task scheduling in critical fog applications,” Sci.
Program., vol. 2022, 2022, doi.org/10.1155/2022/9208066.

[6] A. M. Ali Al-muqarm and N. Ali Hussien, “Resource management
techniques in cloud-fog for iot and mobile crowdsensing

environments,” Int. J. Electron. Telecommunications, 2023, vol. 69,

no. 2, PP. 341-352.
[7] Hosseinzadeh, M., Azhir, E., Lansky, J. et al., “Task scheduling

mechanisms for fog computing: A systematic survey,” IEEE Access,

vol. 11, pp. 50994-51017, 2023.
[8] M. Abdel-Basset, N. Moustafa, R. Mohamed, O. M. Elkomy, and

M. Abouhawwash, “Multi-objective task scheduling approach for

fog computing,” IEEE Access, vol. 9, pp. 126988–127009, 2021.
[9] F. A. Saif, R. Latip, Z. M. Hanapi, and K. Shafinah, “Multi-

objective grey wolf optimizer algorithm for task scheduling in

cloud-fog computing,” IEEE Access, vol. 11, pp. 20635–20646,
2023.

[10] S. Nabi, M. Ahmad, M. Ibrahim, and H. Hamam, “AdPSO: adaptive

PSO-based task scheduling approach for cloud computing,”
Sensors, vol. 22, no. 3, #920, 2022.

[11] A. S. Abohamama, A. El-Ghamry, and E. Hamouda, “Real-time

task scheduling algorithm for IoT-based applications in the cloud–
fog environment,” J. Netw. Syst. Manag., vol. 30, no. 4, #54, 2022.

[12] K. Dubey, S. C. Sharma, and M. Kumar, “A secure IoT applications

allocation framework for integrated fog-cloud environment,” J.
Grid Comput., vol. 20, no. 1, #5, 2022.

[13] B. M. Nguyen, H. Thi Thanh Binh, T. The Anh, and D. Bao Son,

“Evolutionary algorithms to optimize task scheduling problem for
the IoT based bag-of-tasks application in cloud–fog computing

environment,” Appl. Sci., vol. 9, no. 9, #1730, 2019.

[14] S. M. Hussain and G. R. Begh, “Hybrid heuristic algorithm for cost-
efficient QoS aware task scheduling in fog–cloud environment,” J.

Comput. Sci., vol. 64, #101828, 2022.

[15] Q. Liu, H. Kosarirad, S. Meisami, K. A. Alnowibet, and A. N.
Hoshyar, “An optimal scheduling method in iot-fog-cloud network

using combination of Aquila optimizer and African vultures
optimization,” Processes, vol. 11, no. 4, #1162, 2023.

[16] R. Sing, S. K. Bhoi, N. Panigrahi, K. S. Sahoo, M. Bilal, and S. C.

Shah, “EMCS: An energy-efficient makespan cost-aware
scheduling algorithm using evolutionary learning approach for

cloud-fog-based IoT applications,” Sustainability, vol. 14, no. 22,

#15096, 2022.
[17] M. N. Abdulredha, A. A. Bara’a, and A. J. Jabir, “An evolutionary

algorithm for task scheduling problem in the cloud-fog

environment,” Journal of Physics: Conference Series, vol. 1963, no.
1, #12044, 2021.

[18] A. Tsegaye and B. G. Assefa, “HSSIW: Hybrid squirrel search and

invasive weed based cost-makespan task scheduling for fog-cloud
environment,” in Proc. of 2021 Int. Conf. on Information and

Communication Technology for Development for Africa, 2021, pp.

160–165.
[19] R. M. Singh, L. K. Awasthi, and G. Sikka, “Techniques for task

scheduling in cloud and fog environment: a survey,” in Proc. of

Second Int. Conf., Chandigarh, India, 2019, pp. 673–685.
[20] V. K. Singh, A. S. Jasti, S. K. Singh, and S. Mishra, “Quad: A

quality aware multi-unit double auction framework for iot-based

mobile crowdsensing in strategic setting,” arXiv Prepr,
arXiv2203.06647, 2022.

[21] E. Alkayal, “Optimizing resource allocation using multi-objective

particle swarm optimization in cloud computing systems.”
University of Southampton, 2018.

[22] S. H. Anbarkhan and M. A. Rakrouki, “An enhanced PSO algorithm

for scheduling workflow tasks in cloud computing,” Electronics,
vol. 12, no. 12, #2580, 2023.

[23] A. M. A. Al-muqarm and N. A. Hussien, “Dynamic cost-optimized

resources management and task scheduling with deadline constraint
for mobile crowd sensing environment.,” Int. J. Intell. Eng. Syst.,

vol. 16, no. 3, 2023, doi: 10.22266/ijies2023.0630.16.

[24] I. Z. Yakubu and M. Murali, “An efficient meta-heuristic resource
allocation with load balancing in IoT-Fog-cloud computing

environment,” J. Ambient Intell. Humaniz. Comput., vol. 14, no. 3,

pp. 2981–2992, 2023.
[25] F. Rabee and Z. M. Hussain, “Oriented crossover in genetic

algorithms for computer networks optimization,” Information, vol.
14, no. 5, #276, 2023.

[26] M. Agarwal and G. M. S. Srivastava, “Opposition-based learning

inspired particle swarm optimization (OPSO) scheme for task
scheduling problem in cloud computing,” J. Ambient Intell.

Humaniz. Comput., vol. 12, no. 10, pp. 9855–9875, 2021.

[27] M. Agarwal and S. Gupta, “An adaptive genetic algorithm-based
load balancing-aware task scheduling technique for cloud

computing.,” Comput. Mater. Contin., vol. 73, no. 3, 2022, doi:

10.32604/cmc.2022.030778.
[28] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and

R. Buyya, “CloudSim: A toolkit for modeling and simulation of

cloud computing environments and evaluation of resource
provisioning algorithms,” Softw. Pract. Exp., vol. 41, no. 1, pp. 23–

50, 2011.

[29] A. Malav, S. K. Gupta, S. K. Mahariya, K. Joshi, R. Bhauguna, and
S. Verma, “Optimal resource management in cloud computing,” in

AIP Conference Proceedings, 2023, vol. 2771, no. 1.
doi.org/10.1063/5.0152298

[30] S. Bitam, S. Zeadally, and A. Mellouk, “Fog computing job

scheduling optimization based on bees swarm,” Enterp. Inf. Syst.,

vol. 12, no. 4, pp. 373–397, 2018.

Copyright © 2024 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-
NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Abbas M. Ali Al-muqarm received a B.Sc.
degree in computer science from the

University of Kufa, Najaf, Iraq in 2013 and an

M.Sc. degree in computer science from the
Faculty of Computer Sciences and

Mathematics, University of Kufa, Najaf, Iraq

in 2020. He is currently a Ph.D. student. His
current research interests include networking,

Internet of Things (IoT), wireless sensor

networks, Mobile Crowdsensing, Cloud
computing, and Fog computing.

Naseer Ali Hussien is currently working as
faculty member in Alayen University, has

completed his Ph.D. degree in mobile ad hoc

network area from University Utara Malaysia
in 2013. His current research interest in

wireless networks, Internet of Things, Network

performance, cloud computing, Network
Applications.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

