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Abstract—The data generated by the IoT needs a powerful 

platform such as cloud computing for data processing. 

However, the cloud faces challenges when dealing with 

various types of resources, high delay, and cost, this 

represents a substantial challenge in scheduling tasks. 

Therefore, the need appeared to introduce the concept of fog. 

To address these limitations, optimization algorithms such as 

PSO were used. In traditional PSO, all particles in the swarm 

are influenced by a single global best particle (Gbest), if it 

becomes stuck in a local optimum, all the particles will move 

closer to it, thus, the PSO may easily get trapped in 

premature convergence. This paper proposed an adaptive 

cloud-fog integrated approach based on modified PSO called 

PSO Optimized Leader (PSO-OL). These modifications on 

four stages: Firstly, a method to ensure swarm diversity in 

the initialization phase is introduced. Secondly, to reduce the 

chance of the population getting trapped in a local optimum, 

the farthest-best particle is introduced. Third, in addition to 

the primary Gbest, a second Gbest represents a different good 

particle presented to explore multiple promising regions. 

Finally proposed a new crossover operator to get an 

optimized leader. The PSO-OL approach was evaluated and 

the results show the effectiveness of the enhanced leader by 

40% with farthest-best, 45% with second-Gbest when 

compared to standard PSO, and when compared to 

scheduling algorithms where outperforms the other 

algorithms by minimizing makespan by 34%, cost by 14%, 

and increasing throughput by 75%, in comparison to existing 

load balancing and scheduling methods: RR, BLA, MPSO, 

ETS, and TCaS. 

Index Terms—cloud-fog, task scheduling, PSO, optimization, 
IoT, mobile crowd sensing 

I. INTRODUCTION 

Internet of Thing (IoT) is a contemporary innovation 
that has had a powerfully affected on communication and 
information technologies. It has revolutionized how 

various devices and objects, such as surveillance cameras, 
cars, and smartphones, are linked to the Internet, enabling 
them to execute a wide range of applications and 
operations. These advancements, including M2M 

technologies, have expanded Internet access to these 

devices and have facilitated activities like controlling 

traffic, vehicular networking, power management, 
healthcare services, and healthcare. As a result, an 
enormous volume of data is generated by these smart 
devices, which requires management, processing, and 

analysis to extract valuable insights and ensure that client 
software and end users can access them [1]. While sensors 
and IoT have proven to be efficient in data collection and 
urban surveillance, the installation and deployment of 

sensor devices across a city are both time-consuming and 
costly. As an alternative to sensors and IoT, a novel 
approach called Mobile Crowdsensing (MCS) has arisen. 
MCS represents a new approach to data collection, 
enabling regular individuals to share data from their 

mobile devices. This information is pooled and processed 
in the cloud to extract crowd intelligence and deliver 
services focused on people's needs. The data gathered from 
various sources is integrated into the cloud, serving as a 

collector for storage and processing. This evolution 
towards MCS is gaining importance as it replaces 
conventional static sensors, offering a combination of 
traditional IT advantages and mobile communication, 
delivering cost effective, and top-quality services across 

diverse domains. At present, smartphones come embedded 
with a diverse collection of sensors, including cameras, 
microphones, GPS systems, and accelerometers. 
Consequently, MCS holds a distinct advantage over 

conventional sensor utilization due to this enhanced sensor 
suite [2]. 

Cloud computing, as the central component of the IoT, 
offers a range of services including storage capacity, 

powerful processing capabilities, and computing resources. 
It also facilitates the visualization of these resources. 
However, a common challenge with cloud servers is their 
physical distance from end devices. This can lead to 
significant delays in wide area networks (WAN) and a 

diminished Quality of Service (QoS), especially in 
applications that are sensitive to latency. Furthermore, as 
the increasing number of devices that are connected and 
IoT applications continue to grow, cloud computing 

encounters various optimization issues. These challenges 
include bandwidth limitations, privacy concerns, delays, 
storage capacity constraints, security, and the need to 
address the excessive concentration of computing 
resources [3, 4]. 
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Fog computing is an emerging architectural concept that 
aims to address the remoteness issue between IoT devices 
and cloud resources. This novel approach, innovative by 
Cisco, extends the capabilities of cloud to the network's 
edge. Although still in its early stages, fog computing has 
gained recognition as a valuable addition to cloud. It can 
be described as a distributed computing infrastructure that 
brings computational power closer to the network's edge, 
enabling cloud resources to be readily accessible. 
Additionally, due to the notable network latency, the 
transfer of IoT tasks to the cloud leads to a heightened 
delay in the response time for data analysis [5]. 

Efficient task scheduling within cloud-fog architectures 
is a critical concern. Optimizing the utilization of cloud-
fog resources to improve key factors like execution time of 
tasks, operational costs, and consumption of energy is of 
the greatest importance. Effective task scheduling within 
fog system plays a vital role in cost reduction, processing 
time, and communication delays. However, researchers 
often face difficulties in identifying an efficient task 
scheduling method that meets their requirements [6, 7]. 

Generally, the problem at hand is categorized as an NP-
hard problem since it cannot be efficiently solved in 
polynomial time by adding more sensors and fog nodes. 
As a result, traditional methods are unable to address this 
challenge effectively. To overcome this issue, researchers 
have turned their attention to swarm and evolutionary 
algorithms. These algorithms have demonstrated 
remarkable potential in solving problems of real world 
efficiently within shorter time frames [8]. 

Meta-heuristic algorithms are employed to search for 
near-optimal solutions through randomized search 
processes. Popular meta-heuristics are applied for the 
purpose of scheduling tasks such as, Particle Swarm 

Optimization (PSO), Simulated Annealing (SA), Genetic 
Algorithm (GA) and Ant Colony Optimization (ACO) are 
commonly used for task scheduling such as in this paper 
[9] a Multi-Objectives Grey Wolf Optimizer (MGWO) 
algorithm has been introduced with the aim of minimizing 

QoS objectives specifically reducing energy and latency 
within the Fog-broker system. However, these meta-
heuristic algorithms are not without limitations, including 
issues with randomness, limited capability for global 

search, and problem of low convergence in the late 
iterations, often leading to suboptimal local search 
solutions. Moreover, achieving a balance between global 
and local search poses a challenge. 

Scheduling based on PSO achieves better optimization 
performance compared to GA. PSO leverages a more 
intuitive computational background, exhibits faster 
convergence, and is easier to implement in comparison to 
GA. PSO demonstrates versatility in handling both 
discrete and continuous problems, highlighting its 
efficiency in conducting global search within the problem 
space. By prioritizing global convergence, PSO aims to 
discover solutions with superior fitness values. However, 
PSO may encounter limitations in conducting effective 
local search and might not allocate sufficient attention to 
exploring the local subspace. Consequently, as a result, 
there may be a greater chance of becoming trapped in local 
optima, leading to reduced convergence rates during later 
stages [10]. 

While numerous variants of PSO have made significant 
enhancements PSO, they are still unable to a successful 
balance between exploration and exploitation. Issues like 
inefficient search efficiency remain, particularly when 
addressing complex global optimization problems. So 
PSO Optimized Leader (PSO-OL) was proposed in this 
paper to enhance the effectiveness of traditional PSO 
algorithm. 

The main contributions of this paper are summarized as 

follows: 

 This paper addresses the task scheduling issue as an 

multi objective optimization problem in a cloud-fog 

system for IoT/MCS. 

 To mitigate the issue of premature convergence and 

enhance exploitation and exploration capability to 

reduce the local optimal problem, this paper 

introduces a new variant of PSO called PSO-OL. 

 The proposed PSO-OL improves the PSO approach 

by introducing the selection strategy which is based 

on fitness and distance to find the farthest-best particle, 

in addition to introducing the second-Gbest. Then a 

new crossover operator called Dynamic Crossover 

Window (DCW) to find enhanced leader was 

proposed.  

 Comprehensive experiments were carried out with 

five recent state of the art utilizing CloudSim 

simulator under 11 distinct datasets and different 

cloud and fog nodes to confirm the effectiveness of 

the proposed system in managing the task scheduling 

challenge. The results of the simulation showed good 

results compared to the five algorithms. Further 

demonstrated that a balance between cloud and fog 

nodes produces superior outcomes. 

The remaining sections of the paper are structured as 

follows: 

In Section II, an overview of related literature on 

scheduling problems in cloud-fog systems is provided. 

Section III outlines the cloud-fog architecture. Section IV 

introduces standard PSO method. In section V the 

proposed model is presented. section VI introduces the 

proposed PSO-OL. In Section VII, performance metrics 

are introduced. In Section VIII, the implementation and 

experimental outcomes are presented. Section IX outlines 

the conclusion and potential future research directions. 

II. RELATED WORK 

A comprehensive review of existing research on 

resource management and task scheduling challenges in 

Cloud and Fog computing for the IoT/MCS paradigm is 

presented. It includes an analysis of the advantages and 

restrictions of each of the reviewed studies. 

This study proposes a semi dynamic for real time 

scheduling task algorithm for IoT services in the cloud-fog 

scheme. Leveraging a modified genetic algorithm, the 

algorithm optimally assigns tasks to virtual machines 

based on permutations, achieving minimal execution time. 

Comparative evaluations demonstrate its superiority over 

other algorithms in terms of time of execution, makespan, 

failure rate, and average delay time. The proposed 

algorithm offers a promising solution to enhance 



efficiency in cloud data centers handling IoT applications 

and resource utilization [11]. However, the results show no 

improvement in makespan despite the increase in fog and 

cloud nodes, and this indicates the ineffective in used for 

cloud and fog nodes. 

The authors in this paper utilized characteristics of two 
meta-heuristic approaches, namely Cuckoo Search 
Optimization (CSO) with PSO, to create a robust 

framework for addressing IoT allocation requests in a 
cloud-fog system. CPSO is focused on improving delay, 
balancing the load, computation cost, and energy 
consumption. The simulation outcomes clearly 
demonstrated the superior performance of this hybrid 

metaheuristic algorithm compared to baseline strategies 
[12]. However, the concept of security was not clear in the 
results for use in application allocation. 

This paper presents a method for enhancing the 

optimization of task scheduling challenges in cloud-fog 
environments, focusing on reducing execution time and 
operational expenses. The newly introduced approach, 
referred to as TCaS, leverages an evolutionary algorithm 

GA and has been assessed using 11 datasets of varying 
sizes. The experimental outcomes demonstrate an 
enhancement in achieving an equilibrium between task 
completion time and operational cost [13]. But they used a 
two-point crossover operator and this may not maintain the 

quality of the genes. 
Data transmission within a network results in elevated 

latency and unreliable traffic patterns. To optimize 
performance effectively, the authors introduced a new 
combined heuristic method named Hybrid Flamingo 
Search and Genetic Algorithm (HFSGA) is proposed for 
cost-efficient QoS-aware task scheduling. The aim is to 
minimize cost while enhancing QoS through efficient task 
scheduling [14]. However, using two-point crossover 
without adaptive to use in the field of task scheduling may 
not be guaranteed to generate improved offspring 

In this research, a hybrid meta heuristic method, 
denoted as AO_AVOA, is formulated for IoT request 
scheduling within fog-cloud networks. AO_AVOA 
harnesses the Aquila Optimizer (AO) in conjunction with 
the African-Vultures Optimization Algorithm (AVOA) to 
improve the exploration phase of AVOA. In AO_AVOA, 
AO is used to enhance the exploration phase of AVOA. 
The results demonstrate the remarkable capability of 
AO_AVOA in effectively addressing the scheduling 
challenges within IoT-fog-cloud networks [15]. 
Nonetheless, the fitness was single-objective, which was 
to depend on makespan improvement only, as this means 
improvement in one direction contrary to multi-objective 
algorithms. 

This paper introduces the Energy Efficient Makespan 
Cost Aware Scheduling (EMCS) algorithm, employing an 
evolutionary approach (GA) to enhance time of execution, 
cost efficiency, and energy utilization. Comprehensive 
simulations were conducted to assess its effectiveness. 
Findings indicate that optimizing the balance between fog 
and cloud nodes as their numbers increase results in 
improved performance across makespan, cost, and energy 
consumption metrics [16], however, using the GA 
algorithm without any modification may not be enough to 
suit the topic of task scheduling in a cloud-fog system. 

This paper introduced an innovative method to enhance 

task scheduling within a cloud-fog environment, focusing 

on two key aspects: execution time (makespan) and cost 

expenses related to bag-of-tasks applications. The 

proposed approach introduces a task scheduling 

evolutionary algorithm, which incorporates a unique 

problem representation and a consistent uniform 

intersection strategy. Additionally, specialized 

initialization and perturbation procedures, including 

crossover and mutation operations, have been developed 

to address situations where the evolutionary algorithm 

encounters impractical solutions [17], however, the 

uniform crossover can not ensure enhancement in 

offspring because it works randomly.   

This paper explores the equilibrium between two 

prevalent and competing goals in task scheduling within 

the distributed fog cloud environment, namely, makespan 

and cost. To address this challenge, a novel hybrid 

algorithm, known as Hybrid-Squirrel Search and Invasive-

Weed (HSSIW), is employed to efficiently allocate tasks 

generated by IoT devices to suitable fog and cloud nodes. 

The experimental evaluation conducted using CloudSim 

demonstrates that the proposed approach reduces 

makespan and cost [18], but, the authors restricted to 

comparing with traditional algorithms without comparing 

with the literature. 

An in-depth examination of associated works reveals 

and to the best of our knowledge, the researchers did not 

use the PSO algorithm to find a solution to the problem of 

scheduling (independent) tasks in a cloud-fog system, and 

they also did not use the concept of the second-Gbest 

individual with the Gbest using the dynamic crossover 

concept. Furthermore, the incorporation of Mobile 

Crowdsensing into the cloud-fog system was not 

introduced. 

III. CLOUD-FOG TASK SCHEDULING ARCHITECTURE 

The hierarchy of three-layered architecture is illustrated 

in Fig. 1, consisting of three tiers: the end layer (IoT/MCS), 

the fog layer, as well as cloud layer. The end layer is 

responsible for managing various IoT and MCS devices, 

such as sensors, smart vehicles, mobile phones, and smart 

cards, and MCS such as smartphones. This layer is widely 

distributed geographically and in close proximity to the 

users. Devices within this layer gather data from physical 

objects or events and transmit it to the upper layers for 

processing and storage. The fog layer comprises a network 

of gateways, switches, routers, access points, and laptops. 

Devices can connect with fog devices to access services. 

These fog devices may be stationary or mobile and are 

linked to the cloud layer to leverage its powerful 

processing capabilities and extensive storage capacity. The 

fog layer efficiently supports time sensitive and low delay 

applications. Finally, the cloud layer consists of superior 

servers and storage machines, providing robust computing 

power and storage capabilities. This layer supports various 

computational analyses and offers services like smart 

home automation and smart manufacturing applications, 

among others. By integrating these three layers, the 

hierarchical fog architecture enables seamless and efficient 



data processing and service delivery, catering to the 

diverse needs of IoT/MCS applications [19, 20]. 

 
Fig. 1. Three layers architecture (cloud, fog and IoT/MCS). 

IV. STANDARD PSO 

PSO, which stands for Particle Swarm Optimization, 
belongs to the category of Swarm Intelligence (SI) 
algorithms. It draws its inspiration from the social behavior 
observed in animals. Initially proposed by Eberhart and 
Kennedy in 1995, PSO functions as a search optimization 
technique, seeking the best optimal solution by facilitating 
information sharing within the swarm of particles [21, 22]. 

A. Updating Particle Velocity  

The control of velocity is regarded as a key component 
of PSO since it is the primary mechanism utilized to move 
a particle's position in order to find the best solution within 
the search space. The velocity of particle k in the 
population in iteration (t+1)th, is adjusted according to the 
following expression: 

𝑉𝑘
𝑡+1 = 𝑤𝑉𝑘

𝑡 + 𝑐1𝑟1(𝑃𝑏𝑘

𝑡 − 𝑋𝑘
𝑡) + 𝑐2𝑟2(𝑃Gb

𝑡 − 𝑋𝑘
𝑡)    (1) 

where 𝑉𝑘
𝑡+1  depicts the particle k velocity in iteration 

(t+1)th, while 𝑋𝑘
𝑡  represents particle k position in iteration 

tth. The term 𝑃𝑏𝑘

𝑡  refers to the particle k personal best 

position during the tth iteration, and 𝑃Gb
𝑡  signifies the best 

global position within all particles in the tth iteration. The 
real acceleration coefficient c1 is a cognitive coefficient 
and c2 is social coefficient governs the impact of particles 
personal best position and global best position respectively. 
Additionally, to maintain diversity within the population, 
the uniformly distributed random numbers r1 and r2, both 
ranging ∈ [0, 1] are used. 

B. Updating Particle Position 

The position for each particle 𝑘 , at every iteration 
(t+1)th, is calculate according to (2): 

𝑋𝑘
𝑡+1 = 𝑋𝑘

𝑡 + 𝑉𝑘
𝑡+1                         (2) 

where 𝑋𝑘
𝑡+1  represent particle k position in the (t+1)th 

iteration. 

During each iteration, every individual particle adjusts 
its velocity and position using (1) and (2), respectively. 
Consequently, every particle explores the search space 

based on its updated velocity and position. This process 

persists until the particle reaches convergence towards the 
optimal solution. 

After every particle adjusts information of its position 

𝑋𝑘
𝑡+1 , calculates its fitness function value 𝐹(𝑋𝑘

𝑡+1)  and 

compares it to the value of fitness 𝐹𝑏𝑘

𝑡  at the particle's best 

historical position. 

If 𝐹(𝑋𝑘
𝑡+1) < 𝐹𝑏𝑘

𝑡 , meaning that the current particle 

fitness function value is lower than the value of its fitness 
at its historical-best position, thereafter the algorithm 
updates the particles historical best position and assigns it 

as 𝑋𝑘
𝑡+1. Otherwise, if the current fitness function value is 

not smaller, the historical particle best position remains the 
same. The calculation particle historical best-position can 
be determined as follows: 

𝑃𝑏𝑘

𝑡+1 = {
𝑋𝑘

𝑡+1;  𝐹(𝑋𝑘
𝑡+1) < 𝐹𝑏𝑘

𝑡

𝑃𝑏𝑘

𝑡 ;  𝐹(𝑋𝑘
𝑡+1) > 𝐹𝑏𝑘

𝑡 , otherwise
      (3) 

Updated the particle PGb based on the comparison of the 

fitness function 𝐹(𝑋𝑘
𝑡+1)  of particle 𝐹𝑏𝑘

𝑡  with the fitness 

function value FGb of PGb. 

𝑃Gb = {
𝑃𝑏𝑘

t+1;  𝐹𝑏𝑘

t+1 < 𝐹Gb

𝑃Gb;  𝐹𝑏𝑘

t+1 > 𝐹Gb , otherwise  
         (4) 

The PSO algorithm pseudocode is shown in Algorithm 
1 [22]. 

Algorithm 1: PSO Algorithm  

 Input: lower bound LB, upper bound UB, Fitness 

function, Population numbers 𝑃𝑛, Max iteration 𝑀iter, 

𝜔, 𝑐1, 𝑐2 (user-defined). 

 Output: Solution with the best fitness. 

1: Initialize a random population 𝑃 with velocity 𝑉𝑘 and 

position Xk of the kth particle within the bounds; 

2: for 𝑡 = 1 to 𝑀iter do 

3:  for k = 1 to 𝑃𝑛 do 

4:    if  𝐹(𝑋𝑘
𝑡+1) < 𝐹𝑏𝑘

𝑡  then 

5:    𝑃𝑏𝑘

𝑡+1 = 𝑋𝑘
𝑡+1 

6:    𝐹𝑏𝑘

𝑡+1 = 𝐹(𝑋𝑘
𝑡+1) 

7:   end 

8:   else 

9:    𝑃𝑏𝑘

𝑡+1 = 𝑃𝑏𝑘

𝑡  

10:   end 

11:   if 𝐹𝑏𝑘

𝑡+1 < 𝐹Gb then 

12:    𝑃Gb = 𝑃𝑏𝑘

𝑡+1 

13:    𝐹Gb = 𝐹𝑏𝑘

𝑡+1 

14:   end 

15: 
  Adjust the particle's velocity information based 

on Eq. (1). 

16: 
  Adjust the particle's position information based 

on Eq. (2). 

17:  end 

18: end 

 Continue the process until the termination criteria are 

satisfied, which can occur when either the maximum 

number of iterations is achieved or the desired accuracy 

level is achieved. 



V. PROPOSED SCHEDULING MODEL 

In this section, we introduce the proposed PSO-OL 

approach to improve the standard PSO algorithm to handle 

the task scheduling challenge within virtualized fog-cloud 

systems as in Fig. 2. The major goal of this algorithm is to 

reduce the system makespan and cost while maximizing 

resource utilization and throughput. PSO-OL includes 

particle encoding, initializing population, fitness function, 

and crossover operator to generate a new optimized leader, 

in subsequent sections, we explain in-depth every stage 

and the entire PSO-OL methodology for addressing the 

specified problem. 

A. Cloud-Fog-IoT Ecosystem Mechanism 

In the fog environment, data processing occurs within a 

hub located on smart devices, smart routers, gateways, 

switches, laptops, and similar devices. Due to limited 

processing capacity, certain fog nodes collaborate within a 

regional context and connect to cloud nodes, commonly 

known as cloud virtual machines, to fulfill the 

requirements of mobile users. Our system assumes the 

presence of cloud virtual nodes Cn, fog virtual nodes Fn, 

cloud-fog broker brokerc-f, and IoT/MCS users 𝑈IoT/MCS. 

All user requests are promptly forwarded to brokerc-f. 

brokerc-f plays a crucial role in resource monitoring, task 

monitoring, and scheduling tasks within the cloud-fog 

system.  

In order to ensure the performance of the system, the 

proposed PSO-OL algorithm is implemented in brokerc-f. 

Its primary objective is to discover the most efficient 

schedule for task execution, optimizing both time and 

resource utilization factors. The step-by-step explanation 

of the ecosystem mechanism is shown in Fig. 3. The 

process starts by sending the task request from (service 

requester 𝑈IoT/MCS) which could be a person or a company 

to brokerc-f (brokerc-f installed in MCS platform). MCS 

platform sends requests to MCS workers and waits for a 

response, after getting a response brokerc-f is responsible 

for executing the scheduling algorithm. This algorithm 

calculates the expected task completion time, considering 

the capabilities of the available resources and the specific 

requirements of each task, and allocates to suitable cloud 

or fog nodes. Each node is responsible for processing the 

received tasks and returning the results to brokerc-f. Finally, 

the corresponding responses are returned to the requester. 

 
Fig. 2. Proposed fog-cloud task scheduling model for IoT/MCS environment. 

 

 
Fig. 3. The mechanism of cloud-fog system. 
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B. Problem Formulation 

If jobs are appropriately assigned to virtual 

machines )VMs(, cloud-fog task scheduling can be 

effective and achieve high performance. When requests 

from 𝑈IoT/MCS applications are sent to brokerc-f, for 

processing across the cloud-fog system. This explanation 

assumes that the cloud-fog system is housed in a datacenter 

with a variety of servers, each of which hosts a number of 

virtual machines VMs. Let’s assume there are n tasks, and 

they are as follows: 

𝑇 = {𝑇1, 𝑇2, 𝑇3, … , 𝑇𝑛}                          (5) 

Ti represents the ith independent task, i ∈ {1,2, ..., n}. 

The attributes of each task Ti consist of various factors 

such as {𝑇id, task length, memory demand, file sizes for 

the input/output}. The task length is measured in terms of 

Millions-of-Instructions (MI). 

The cloud-fog infrastructure is composed of CPUs, 

denoted as cloud-nodes Cn and fog-nodes Fn, each of 

which has multiple characteristics, including various 

processor powers, different bandwidth, memory sizes, and 

storage capacity. Consider a set of R nodes from cloud-fog 

defined as follows: The collection of processors m 

encompassing both Cn and Fn in the system, 𝑅 = {𝐶𝑛 ∪
 𝐹𝑛} is formulated as: 

𝑅 = {𝑅1, 𝑅2, 𝑅3, … , 𝑅𝑚}                          (6) 

where Rj denotes the virtual processing for the jth virtual 

node. Each Ti is assigned to only one virtual node Rj, that 

denoted by 𝑇𝑖
𝑗
. Every R node can be allocated a set of tasks 

𝑅𝑗(𝑗 =  1, 2, 3, … , 𝑚) as illustrated in the following: 

𝑅𝑗
𝑇 = {𝑇𝑥

𝑗
, 𝑇𝑦

𝑗
,×××, 𝑇𝑧

𝑗
}                          (7) 

In general, cloud nodes tend to be more powerful 

compared to fog nodes. However, utilizing cloud nodes 

typically incurs higher costs in comparison. 

Our proposed model consists of a limited number of 𝑅𝑗 

which are heterogeneous virtual nodes, each of which has 

a different ability to run a given task. 

The time taken for task i to execute on 𝑅𝑗 is represented 

as execution time ETij and can be determined using the 

following mathematical expression [23]: 

ET𝑖𝑗 =
𝐿(T𝑖)

𝑁PEj × RMIPS𝑗

                           (8) 

where 𝐿(T𝑖) is the task length measured in MI, 𝑁PEj refers 

to the count of processing elements in 𝑅, and RMIPS𝑗
 is the 

processing speed of R, expressed in million-instructions-

per-second (MIPS). 

Eq. (9) computes total execution time TET𝑅𝑗
for 

executing set of tasks in 𝑅𝑗: 

TET𝑅𝑗
= ∑ ET𝑖𝑗

𝑛
𝑖=0                              (9) 

Let’s consider that makespan refers to the total time 

needed to finish a set of tasks on 𝑅𝑗. The makespan can be 

calculated using the following [24]: 

Makespan = Max1≤𝑗≤𝑚[TET𝑅𝑗
]                  (10) 

The Cost(𝑇𝑖
𝑗
) can be defined as the total cost associated 

with completing the 𝑇𝑖
𝑗
 on 𝑅𝑗. This cost encompasses the 

processing cost 𝐶𝑝(𝑇𝑖
𝑗
), memory required cost 𝐶𝑚(𝑇𝑖

𝑗
), 

and bandwidth usage cost 𝐶𝐵(𝑇𝑖
𝑗
). 

The calculation of Cost(𝑇𝑖
𝑗
) is described as follows [11]: 

Cost(𝑇𝑖
𝑗
) = 𝐶𝑝(𝑇𝑖

𝑗
) + 𝐶𝑚(𝑇𝑖

𝑗
) + 𝐶𝐵(𝑇𝑖

𝑗
)       (11) 

The three costs mentioned above are defined as follows: 

𝐶𝑝(𝑇𝑖
𝑗
) =  CostCPU−𝑗 × ET𝑖𝑗                           (12) 

𝐶𝑚(𝑇𝑖
𝑗
) =  Cost𝑀−𝑗 × Memory (𝑇𝑖

𝑗
)             (13) 

𝐶𝐵(𝑇𝑖
𝑗
) =  Cost𝐵−𝑗 × Bandwidth(𝑇𝑖

𝑗
)          (14) 

where CostCPU−𝑗 is the cost associated with utilizing the 

CPU for task execution on node 𝑅𝑗 within a specific time, 

Cost𝑀−𝑗 represents the memory cost which usage in node 

Rj, Memory (𝑇𝑖
𝑗
) denotes how much memory Ti consumed 

in node Rj, Cost𝐵−𝑗  refers to the cost of utilizing 

bandwidth, and bandwidth (𝑇𝑖
𝑗
)  represents the required 

bandwidth for transferring Ti to be executed on Rj. 
The total cost of executing all tasks within a cloud-fog 

environment can be expressed in the following: 

TotalCost = ∑  
𝑇

𝑖
𝑗

∈𝑇node Cost (𝑇𝑖
𝑗
)               (15) 

Table I presents the essential symbols, terms, and 

concepts used in the proposed scheduling model. 

TABLE I: PSO-OL NOTATIONS USED 

Notation Definition 

Cloudlet Task representation in CloudSim. 

VMs Virtual-Machines. 

MI Million-Instructions data of cloudlet. 

MIPS Million-Instructions Per Second. 

𝑁PE 𝑗 Processing elements number in VM. 

RMIPS𝑗
 Speeds of VM. 

VMid  The identification number of VM. 

𝑇id Identification number of cloudlet. 

𝑆𝑇 
Number of tasks that have been 

completed successfully. 
𝐶𝑛 Cloud virtual nodes. 

𝐹𝑛 Fog virtual nodes. 

brokerC−F Cloud-Fog broker. 

𝑈IoT/MCS IoT/MCS users 

𝑡 Iteration. 

Pn Population or individuals number. 

𝑃dim Particle dimension. 

𝑀iter Maximum iteration. 

𝑃sim Similarity factor between particles  
𝑑af Dynamic adjustment factor. 

cr Crossover rate. 

ⓧ crossover operation 

C. Particle Encoding for Task Scheduling 

Adhering to the core concept of population based 

algorithms, each particle within the population is 

characterized as a scheduling solution. In PSO-OL a 

particles position is represented as an array, indicating the 

assignment of Ti to Rj. The length of this array determined 



by the particle dimension 𝑃dim, relates to the overall count 

of tasks as illustrated in Fig. 4. 

Every element contains the Rj index for executing its 

corresponding Ti. For instance, if position[ 𝑃dim ]=5, it 

implies that task Ti will be executed on R5. The particles 

minimum and maximum positions range from 1 to the total 

number of 𝑅 that is m, respectively. 

 
Fig. 4. Particles encoding representation for proposed task scheduling 

problem. 

The particle velocity is represented as an array of the 

same size as the position array. Within each iteration, each 

element includes the result of a velocity update equation. 

The result is then utilized to adjust the index of a VM in 

order to execute the associated task. 

In a scenario where 𝑛 tasks need to be scheduled across 

𝑚  nodes in the cloud-fog, will be Pn particle with a 

dimension of 𝑛 that means 𝑃dim. To represent the position 

information of each particle in the particle swarm, use the 

following: 

𝑥𝑖 = {𝑥𝑖1, 𝑥𝑖2 , … , 𝑥𝑖𝑛};      ∀1 ≤ 𝑖 ≤ 𝑚            (16) 

This indicates that every 𝑥𝑖 describes a feasible solution 

for the PSO method, whereas 𝑥𝑖1  represents that the ith 

task is allocated to the resource 𝑥𝑖1 . The velocity of 

particles is defined as: 

𝑣𝑖 = {𝑣𝑖1, 𝑣𝑖2 , … , 𝑣𝑖𝑛};   ∀1 ≤ 𝑖 ≤ 𝑚             (17) 

Assuming that there are eight particles in the population 

and that the information of particle position is represented 

as (5, 7, 3, 4, 2, 1, 2, 6, 4), this means that the particle has 

nine dimensions, Table II. displays the task allocation to 

resources as a particle. 

TABLE II: A SCHEME FOR ASSIGNING TASKS 

Tasks 

(dimensions) 
1 2 3 4 5 6 7 8 9 

Resources 

(VMs) 
5 7 3 4 2 1 2 6 4 

D. Fitness Function 

The fitness function calculates the optimal value for 

each individual element referred to as personal best fitness 

𝐹𝑏𝑘

𝑡 as in (18) in the case of a minimization or maximization 

problem. The fitness value among whole individuals is 

denoted as the global best fitness 𝑃Gb
𝑡  as in (19). 

𝐹𝑏𝑘

𝑡 = min(𝐹𝑏𝑘
)                                 (18) 

𝑃Gb
𝑡 = min(𝐹𝑏𝑘

𝑡 )                                 (19) 

In this paper, we formulated a fitness function that 

incorporates two important metrics as in Eq. (20): 

𝐹(𝑥) = 𝛼 × Makespan + 𝛽(
1

RU
)                (20) 

where the fitness function 𝐹(𝑥) = Minimization 

(Objective), 𝛽 = 1 − 𝛼  and 

RU =
∑ 𝐸𝑇𝑗

𝑚
𝑗=1

Makespan × m 
                               (21) 

This function aims to achieve a balance between the 

normalized makespan and resource utilization of a fog-

cloud devices trade-off. In this paper, we transformed the 

problem into a single-objective optimization problem by 

means of a weighted sum approach. 

The primary goal of the algorithm introduced in this 

paper is to allocate resources to tasks efficiently, aiming to 

maximize resource utilization and minimize the makespan 

(i.e., Maximize RU; Minimize Makespan). 

𝛼  and 𝛽  are the trade-off coefficients between the 

makespan and resource utilization and α + β = 1. When the 

value of α is greater than 0.5, this means the β is less than 

0.5 and the task assignment approach places a priority on 

decreasing makespan over overall resource utilization. 

Conversely, if α is less than 0.5, makespan becomes less 

significant compared to resource utilization. When both 

makespan and resource utilization are given equal priority, 

the value of α is set to 0.5 in this work. 

VI. PROPOSED PSO OPTIMIZED LEADER (PSO-OL) 

In traditional PSO, a significant challenge arises. The 

concern pertains to the potential premature convergence 

due to all particles gravitating toward the swarm leader and 

if it becomes stuck in a local optimum, all the particles will 

move closer to it, thus, the PSO may easily get trapped in 

premature convergence. The diversity of the swarm as it 

moves across the solution space has an impact on the 

solution quality. High particle diversity in the early stage 

is sought for the greatest solution space to locate a good 

seed of search. All particles in PSO are naturally drawn 

towards the swarm leader 𝑃Gb. Therefore, having a high-

quality leader can greatly enhance the efficiency of the 

search process, much like how a competent leader in a 

society or organization can lead to greater success. PSO-

OL represents a new variant of PSO that distinguishes 

itself by continually enhancing the swarm leader at every 

iteration of the search process. 

The PSO technique is enhanced by incorporating four 

primary modifications in the proposed method PSO-OL. 

Firstly, a method to prevent the similarity between 

particles to get diversity in initial stage is introduced. 

Secondly, a strategy to select a particle from the population 

in each iteration, namely, Farthest-best (Fb), is introduced 

based on selecting a particle to use with 𝑃Gb to find a new 

enhanced leader after applying the proposed new crossover 

on them, which considers both the current fitness value of 
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particle and their distance to 𝑃Gb within the present swarm, 

and we designed a new dynamic adjustment factor to 

control on the selection of particle. This strategy balances 

an exploration by giving a distance a high impact in early 

iterations and works on enhancing the exploitation by a 

focus on fitness in the latest iterations. Third, when all 

particles converge to one position, the search process no 

longer evolves. To overcome this challenge, in this paper, 

we focus on utilizing information from the second-best 

particle in addition to 𝑃𝐺𝑏  by using the crossover between 

them to find an optimized leader that has an updated 

position vector that will combine information from the 

Gbest and the second-Gbest. Finally, proposed a new 

crossover operator: In PSO-OL, a successive crossover 

strategy is applied to get a better new swarm leader at each 

iteration based 𝑃Gb, Fb and second-Gbest. After finding the 

Fb and second-Gbest particles, the proposed crossover is 

applied to generate offspring then choose the best one to 

become as leader in each iteration. 

This process iterates until a predefined termination 

condition is met, which may involve reaching an 

acceptable solution or exceeding the maximum iteration 

limit. The best solution discovered during these iterations 

is then presented as the final result. 

A. Proposed Initial Population Method PPIS 

The algorithm convergence rate is affected by 

population diversity which can be achieved in the initial 

stage. The primary phase in the optimization process of 

metaheuristic techniques involves establishing the initial 

population. To initialize the swarm, a vector of P particles 

is generated within a number of population 𝑃𝑛. For every 

particle, the initial position and velocity are randomly 

generated in standard PSO. 

In this paper, the population is created randomly, and 

then apply the proposed method to Prevent Particle Index 

Similarity (PPIS). After the generation of all particles, start 

checking the indexes for instance, particle 𝑃2  with the 

corresponding indexes of 𝑃1 for all genes in the particle if 

the similarity factor 𝑃sim  is greater than 50%, then the 

particle is rejected. Otherwise, the replacement mechanism 

will apply as in (22). This means examining each 

individual with the previous one.  As for setting the 𝑃sim 

to 50%, it is for the purpose of reducing the number of 

replacements. 

Replacing is used to achieve diversity for mapping VMs 

in the initial phase. This means if the index in particle 𝑃2 

is 𝑋𝑖, then should be not particle 𝑃1 index is the same value 

in 𝑋𝑖, if is same index value is replaced with 𝑋𝑖+1 value as 

shown in Fig. 5, and Algorithm 2. 

𝑃𝑖+1 = {
Reject;  if 𝑃sim > 50%
Accepte;  replace as: new 𝑋𝑖 =  𝑋𝑖+1

    (22) 

The position of every particle is assigned to its related 

local best solution 𝑃𝑏𝑘

 . The lowest value of 𝐹𝑏𝑘

𝑡  among 

entire particles is set to the FGb of the population. 

Furthermore, the essential parameters of PSO are defined, 

including the inertia weight w, learning factors c1, c2, and 

the random variables within the range [0,1]. Moreover, the 

rand() is the random function to generate random numbers 

∈ [0,1], and Miter defines the maximum iteration number. 

Subsequently, the fitness value of whole particles is 

calculated using (20) to obtain the fitness for each particle. 

 
Fig. 5. The proposed initial population method PPIS example.  

B. Farthest-Best Particle Mechanism (FbPM) 

If the entire population has already converged to a small 

area, easy to trap in a local optimum, in this case, we 

introduced another particle in the search space called 

Farthest-best (Fb). Fb is the farthest distance from 𝑃Gb with 

good fitness and can explore another region and avoid 

repeated searching in the subspace that the Gbest has 

already searched. 

In this strategy, the 𝑃Gbindividual selects one particle in 

each iteration from the population that is Fb which is 

determined by fitness value and the farthest distance value 

between 𝑃Gb and each particle in population. This paper 

utilizes the Euclidean distance difference to find Fb 

particle. Eqs. (23) and (24) represent the 𝑃Gb  and Fb 

information respectively. 

When determining the 𝐹Gb and updating the fitness of 

each particle in population, then, calculated the Euclidean 

5 2 4 8 6 0 1 9 11

1 5 9 1 6 2 8 10 3

New
1 5 9 1 2 6 8 10 3

< 50% 

Algorithm 2: Prevent particle index similarity PPIS in the 

initial population. 

 Input: 𝑃𝑛, 𝑃dim, k=0.  

 Output: Dissimilar individuals in the population. 

1: Initialize position and velocity randomly, Rand-F ∈ 

(0, m). 

int [][] particle = generate Pn particles with 𝑃dim∈ 

Rand-F [𝑃𝑛][𝑃dim];  

   /*Apply PSPI procedures*/ 

2: for i=1 to Pn do   

3:  for j = 0 to 𝑃dim do 

4:   if (particle[i][j] == particles[i1][j]) then 

5:   k++  

6:          end 

7:  if (k > 𝑃dim/2) then                /*means  k >50%*/ 

8:   Reject particle[i] 

Generate new random individual 
9:  end 

10:  else 

11:   for j = 0 to 𝑃dim do 

12:    if (particles[i][j] = = particles[i1][j]) then 

13:       particles[i][j] = particles[i][j+1] 

14:    end 

15:    end 

16:  end 

17: end 

 Note: in the same way repeat steps from 2 to 17 to 

check all particles.  



distance 𝐷(𝑃Gb − 𝑃𝑖) between the 𝑃Gband ith individual as 

stated in Eq. (25). 

Gb1 = {𝑃Gb, 𝐹Gb},       ∀ 1 < 𝑃Gb < 𝑚            (23) 

𝐹𝑏 = {𝑃Fb 
, 𝐹Fb 

},       ∀ 1 < 𝑃Fb 
< 𝑚            (24) 

where Gb1: a global best particle. {position, fitness}, 𝑃Fb: 

Farthest-best position, and 𝐹Fb: Farthest-best fitness. 

(𝐷𝑃Gb−𝑃𝑖)

= √(𝑃Gb
1 − 𝑥𝑖

1)
2

+ (𝑃Gb
2 − 𝑥𝑖

2)
2

+. . . +(𝑃
Gb

𝑃dim − 𝑥
𝑖

𝑃dim)
2
 

∀ 0 < 𝑖 < 𝑃𝑛                                                        (25)  

The vector of distance (𝐃𝑃Gb−𝐏𝑖)  and the vector of 

fitness FP which are generated in each iteration for 

candidates solution of global best and particles as given in 

(26) and (27). 

(𝐃𝑃Gb−𝐏 ) = [𝐷𝑃Gb−𝑃1, 𝐷𝑃Gb−𝑃2  , … , 𝐷𝑃Gb−𝑃𝑃𝑛 ]     (26) 

𝐅𝑃 
= [FP1

, FP2
, … , F𝑃𝑛   

]                       (27) 

This method calculates the distance only from 𝑃Gb  to 

particles, which reduces the complexity of the calculation 

when compared to a method that computes the distance 

between each particle and all other particles in the 

population. 

The combined rating based fitness-distance ( 𝑅fd ) of 

every particle is calculated, and select particle depending 

on which one receives the highest rating. 

𝑅fdrepresents the index of a chosen example, created 

through the implementation of the 𝑅fd strategy. Initially, 

the fitness and distance vectors of data are normalized as 

follows: 

𝑁(𝐃𝑃Gb−𝐏𝑖 )
= 

𝐷𝑃Gb
−𝑃𝑖 −min(𝐃𝐏𝐆𝐛−𝐏 )

max(𝐃𝑃Gb−𝐏 )−min(𝑫𝑃Gb−𝑷 )
         (28)  

𝑁(𝐅𝑃𝑖 
) =

𝐹𝑃𝑖 
−min(𝐅𝑃 )

max(𝐅𝑃 )−min(𝐅𝑃 )
                     (29) 

where min(), and the max() represent the minimum and 

maximum values within vector 𝐅𝑃 
 and vector 𝐃𝑃Gb−𝐏 , 

respectively. 

Now we designed a new dynamic adjustment factor 𝑑af 

as in (30)  

𝑑af(𝑡 + 1) = 𝑑af(𝑡) + (
0.5

𝑀iter
)                      (30) 

𝑑af(𝑡): initial value is 0.5. where 0 ≤ t ≤ 𝑀iter 

Equation (31) can be used to compute the 𝑅fd  of 

particles with 𝑃Gb, resulting in a symmetric matrix. Then, 

the individual with the maximum rating M𝑅fd within the 

matrix is selected, as specified in Eq. (32). 

𝑅fd = 𝑑af(1 − 𝑁(𝐅𝐏𝐢)
) + (1 − 𝑑af)𝑁(𝐃𝑃Gb−𝑃𝑖)   (31) 

M-𝑅fd = max (𝑅fd)                            (32) 

By dynamically adjusting the weight of 𝑑af . The 𝑑af 

value starts with a small value of 0.5, and after increasing 

the iteration it will gradually increase until it reaches 1 at 

the last iteration 𝑀iter, and then there will be no effect on 

the distance, and this is good for focusing on the diversity 

when the small value (enhancing exploration within the 

population). When a large value, it focuses on fitness to 

enhance exploitation and in the end, when the value 

becomes equal to 1, the focus becomes entirely on fitness, 

meaning that the algorithm emphasizes exploitation to 

search for the best solutions as shown in Table III. 

TABLE III: EFFECTIVE OF 𝑑𝑎𝑓 VALUE 

𝒅𝐚𝐟 Value 
Probability of 

focusing on 
fitness 

Probability of 
focusing on 

diversity 

0.5 
𝑑af(𝑡) 

Equal Equal 

. 

. 

. 

. 

. 

. 

. 

. 

. 

𝑑af(𝑀iter/2) High Low 

. 

. 
. 
. 

. 

. 

1 
𝑑af(𝑀iter) 

100% 0% 

C. Second Global-Best Particle (SGbP) 

PSO stands as a population-centered optimization 

technique that strives to strike a balance between 

exploration which involves seeking out new promising 

areas, and exploitation, which focuses on refining the best-

discovered solution. The best particle represents the 

current global best solution, while the second-best particle 

may represent a different solution that is also quite good. 

Nonetheless, if a particle exclusively acquires 

knowledge from the farthest individual, it will exhibit 

erratic oscillations, making it challenging to attain an 

improved solution. Consequently, a learning direction 

from the second-best particle is introduced to ensure that 

particles do not significantly diverge during exploration. 

The concept of using both the 𝑃Gb  and a second-best 

with the crossover process in swarm intelligence and 

optimization algorithms represents a new approach to 

enhance the search for optimal solution. This innovative 

strategy leverages the strengths of two distinct leaders 

within a population of agents, allowing for more diverse 

exploration and potentially leading to the discovery of 

even better solutions. 

We need to determine the fitness and positions of first 

(Gb1) (Gb1) as in (23) and second-best (𝐺𝑏2) as in (33) and 

Fig. 6. 

𝐺𝑏2 = {𝑃Gb𝑠 , 𝐹Gb𝑠}, ∀ 1 < 𝑃Gb𝑠 < 𝑚 and 𝐹Gb𝑠 > 𝐹Gb  

(33) 

𝐺𝑏2 : is a second global best particle with { 𝑃Gb𝑠  as 

position, and 𝐹Gb𝑠  as fitness}. 

 
Fig. 6. Determine the Gb1 and Gb2. 
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D. Proposed Crossover Operator DCW 

The crossover is considered one of the important GA 

operators [25]. The crossover operator aims to generate 

new particle by changing the position inside two particles. 

The crossover operator can improve the sharing of 

information between particles and prevent the early 

convergence of a swarm. The new crossover mechanism is 

proposed in this paper to get an optimized leader. 

In this work, a Dynamic Crossover Window (DCW) is 

proposed as shown in Algorithm 3 and Fig. 7 with a full 

example of the parents that inherit the quality genes in 

offspring. The crossover operation depends on 𝑑af value as 

in subsection (B) and (30). We need to define the dynamic 

factor (𝐷fa) as in (34) based value of 𝑑af that starts from 

0.5 to 1 in the last iteration. 

𝐷fa = 1 − 𝑑af𝑃
dim, ∀  0.5 < 𝑑af ≤ 1       (34) 

The 1 − 𝑑af is for starting the crossover segment small 

in early iteration and increases gradually. This is because 

in the initial iterations, the value of 𝑑af is impact on the 

distance, and thus there will be less focus on fitness. 

Therefore, we need to reduce the window so that the genes 

are not changed significantly and the quality of the particle 

is maintained, while when the iterations progress, the 

choice of the Fb particle becomes completely dependent on 

the fitness value, and in this way a good particle is chosen. 

That’s why we increase the window of change. The limit 

lm as in (35) is to find the difference between 𝑃dimand 𝐷fa 

to use in (36) to find crossover segment Cs. Cs is 

determines how much the size of window.  

𝑙𝑚 = 𝑃dim − 𝐷fa                                (35) 

𝐶𝑠 = 2𝑙𝑚 − 𝑃dim                              (36) 

Equation (37) is to determine the range of start Cs, where 

𝑆rp is represent the start point in range [0, 𝐻𝑟] randomly as 

in (38): 

𝐻𝑟 = | 𝑃dim − 𝐶𝑠 |                             (37) 

𝑆rp = rand [0, 𝐻𝑟]                             (38) 

While the end crossover segment 𝐸cs  in (39) is to 

determine the end of Cs. The gens between 𝑆rp and Ecs are 

selected based uniform crossover with rate (cr)  (which is 

set to 0.8) between two particles while the remaining genes 

(out of the range) are select from global best particles, the 

DCW is applied on 𝑃Fb  and 𝑃Gb𝑠  with 𝑃Gb  in the two 

stages. 

𝐸cs = [𝑆rp + 𝐶𝑠 ]                         (39) 

So then, Cs in interval [Srp, Ecs]. 

After getting a Fb particle, if 𝐹Fb is better than 𝐹Gb, then 

𝑃Fb takes the position of 𝑃Gb. 

However, if it is not a better, the crossover applied 

between 𝑃Fb  and 𝑃Gb  particles to find a new particle we 

called 𝐶GbF  as in (40). If the 𝐹(𝐶GbF) is better than 𝐹Gb, 

then 𝐶GbF takes the position of 𝑃Gb. 

𝐶GbF=𝑃Fbⓧ𝑃Gb                         (40) 

where ⓧ is a crossover operation. 

If 𝐹(𝐶GbF) is not better than 𝐹Gb, the crossover applied 

between 𝑃Gb𝑠 and 𝑃Gb particles as in Eq. (41). 

𝐶Gbs=𝑃Gb𝑠ⓧ𝑃Gb                         (41) 

If the 𝐹(𝐶Gbs)  is better than 𝐹Gb , then 𝐶Gbs  takes the 

position of 𝑃Gb. Otherwise it will update velocity based on 

𝑃Gb. 

 Illustrative Example of DCW 

Consider number of cloudlets is 100, total number of  

VMs {𝐶𝑛+𝐹𝑛} is 15 and number of iterations is set to 150, 

then when 1 − 𝑑𝑎𝑓 is 0.4833333333 in iteration 4 where 

𝑑af > 0.5, the 𝐷fa will be 48, 𝑙𝑚 is 52, 𝐶𝑠  is 4, 𝐻𝑟  is 96, 𝑆rp 

is in range [0, 96] random, then 𝑆rp is 64 select randomly 

within range and 𝐸cs is 68. 

 
Fig. 7. Illustrative example of proposed DCW. 

Algorithm 3: Proposed crossover operator DCW 

 Input: 𝐺𝑏1 = {𝑃Gb, 𝐹Gb} , 𝐹𝑏 = {𝑃Fb , 𝐹Fb } , 𝐺𝑏2 =

{𝑃Gb𝑠 , 𝐹Gb𝑠}, cr.     
 Output: Enhanced leader (particle) 𝐶GbF and 𝐶Gbs  

1: Find dynamic factor 𝐷fa based value of 𝑑af as in (34)  

2: Find The 𝑙𝑚 as in (35) is to find the deference between 

𝑃dim and 𝐷fa. 

3: Calculate 𝐶𝑠 to determine size of window based (36) 

4: Determine the range of start 𝐶𝑠 , where 𝑆rp is represent 

the start point in range [0, 𝐻𝑟] based (37) and (38) 

5: Determine the 𝐸cs  using (39) 

6: 𝐶GbF = Array with size 𝑃dim 

7: 𝐶Gbs = Array with size 𝑃dim 

8: for j = 0 to 𝑃dim1 do   

9:          if j ≥ 𝑆rp and j < 𝐸cs   then 

10:   if random ∈ (0, 1) < cr then 

11:    𝐶GbF[j]=𝑃Gb[j]   

12:   end 

13:   else 

14:     𝐶GbF[j]=𝑃Fb [j]   

15:           end 

16:   else 

17:      𝐶GbF[j]=𝑃Gb[j] 

18: end  

 Note: in the same way repeat steps from 7 to 18 to get 

𝐶Gbs 

4 2 3 5 7 4 9 11 14 0

= 4

= 64 = 68

is 0.4833333333

2 0 8 9 14 11 12 10 13 1

= 4

= 64 = 68

4 2 3 (0.3) 5 (0.8) 14 (0.4) 4 (0.9) 12 11 14 0

or

2nd best



E. Complete Model for PSO-OL Scheduler 

The flowchart of the proposed scheduling approach 

PSO-OL is presented in Fig. 8 and the pseudocode is 

shown in Algorithm 4. Firstly, the particles are initialized 

according to the proposed PPIS strategy as in subsection 

(A). Then, find Fb particle based 𝑅fd  with 𝑑af  as in 

subsection (B), and then find the second-Gbest as in 

subsection (C). The proposed crossover DCW is used with 

these two particles to generate an optimized leader in each 

iteration. 

 
Fig. 8. Flowchart of the proposed PSO-OL. 

Algorithm 4: Proposed PSO-OL scheduler algorithm 

 Input: 𝑇: List of tasks, 𝑇 = {𝑇1, 𝑇2, 𝑇3, … , 𝑇𝑛} with its 

{ 𝐿(T𝑖) in MI, input/output file sizes}, 𝑅: List of 

cloud-fog nodes, 𝑅 = {𝑅1, 𝑅2, 𝑅3, … , 𝑅𝑚} with its 

{RMIPS𝑗
, 𝑁𝑃𝐸 𝑗  RAM, BW}, LB, UB, 𝑃𝑛, 𝑀iter, 

𝜔, 𝑐1, 𝑐2. 

 Output: Best mapping of 𝑇 on 𝑅. 

1: for k = 1 to 𝑃𝑛 do 

2:  Initialize a population 𝑃  with velocity 𝑉𝑘  and 

position 𝑋𝑘  of the kth particle within the bounds 

using PPIS function as in Algorithm 2. 

3:  Compute𝐹(𝑥)based (20) and update personal bests 

and swarm best. 

4:  Set best position of particle as 𝑃𝑏𝑘

𝑡  

5:  Select best particle among swarm as leader 𝑃Gb 

6:  Select second best particle among swarm 𝑃Gb𝑠  

7: end 

t=1 

8:  while (t <= 𝑀iter) do  

9:  for k = 1 to 𝑃𝑛 do 

10:        Compute new velocity using 𝑉𝑘
𝑡+1 = 𝑤𝑉𝑘

𝑡 +

𝑐1𝑟1(𝑃𝑏𝑘

𝑡 − 𝑋𝑘
𝑡 ) + 𝑐2𝑟2(𝑃Gb

𝑡 − 𝑋𝑘
𝑡 ) 

11:   if 𝑉𝑘
𝑡+1 not in range then 

12:    Put it in range according to LB and UB 

13:   end 

14:   Compute new position using 𝑋𝑘
𝑡+1 = 𝑋𝑘

𝑡 + 𝑉𝑘
𝑡+1 

15:   Evaluate fitness of all particles using 𝐹(𝑥) as per 

(20)  

16:   if 𝐹(𝑋𝑘
𝑡+1) < 𝐹𝑏𝑘

𝑡  then 

17:    𝑃𝑏𝑘

𝑡+1 = 𝑋𝑘
𝑡+1 

18:    𝐹𝑏𝑘

𝑡+1 = 𝐹(𝑋𝑘
𝑡+1) 

19:   end 

20:   else 

21:    𝑃𝑏𝑘

𝑡+1 = 𝑃𝑏𝑘

𝑡  

22:   end 

23:   if 𝐹𝑏𝑘

𝑡+1 < 𝐹Gb then 

24:    𝑃Gb = 𝑃𝑏𝑘

𝑡+1 

25:    𝐹Gb = 𝐹𝑏𝑘

𝑡+1 

26:   end 

27:   Find farthest-best Fb using farthest-best particle 

mechanism (FbPM) 

28:   if 𝐹Fb < 𝐹Gb  then 

29:    𝑃Gb= 𝑃Fb 

30:   else 

31:    Apply crossover using DCW as in 

Algorithm 3  

𝐶GbF=𝑃Fbⓧ𝑃Gb 

32:   end 

33:    if F(𝐶GbF)<𝐹Gb then 

34:    𝑃Gb = 𝐶GbF         /*become 𝐶GbF as leader*/ 

35:   else 

36:    𝐶Gbs=𝑃𝐺𝑏𝑠ⓧ𝑃Gb 

37:    if F(𝐶Gbs)<𝐹Gb then 

38:     𝑃Gb = 𝐶Gbs      /*become 𝐶Gbs as leader*/ 

39:    end 

40:   end 

41:  end 

42:  t++ 

43: end 

 Continue the process until the termination condition is 

met, which can occur when either the maximum 

number of iterations is reached or the desired accuracy 

level is achieved. 

VII. PERFORMANCE METRICS 

Four evaluation metrics that used to test and evaluate the 

performance of the proposed MODEL-PSO in a cloud-fog 

system. These metrics include makespan, cost, throughput, 

and the Performance Improvement Ratio (PIR). It is 

important to highlight that in the existing literature, most 

researchers commonly rely on makespan or in some cases 

Start

Initialization particle using PPIS function as in 

algorithm 2. 

Update positions and velocities of particles using:

Compute fitness function and update personal bests and 

swarm best

Select best particle among swarm as leader 

Select second best particle among swarm 

Find the Farthest-best using Farthest-Best Particle Mechanism

(FbPM)
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cost as the primary measure to evaluate the effectiveness 

of their algorithms. However, in the case of the PSO-OL 

approach, the evaluation encompasses the following 

metrics: 

A. Makespan 

Makespan is the primary objective and widely used 

metric for evaluating the efficiency of scheduling in a 

cloud-fog for IoT/MCS environment. It can be defined as 

the completion time of the last executed task. A smaller 

makespan indicates that the broker has effectively 

allocated tasks to the appropriate VMs. The makespan is 

mathematically represented as provided in Eq. (10). 

B. Cost 

The cost in cloud-fog task scheduling refers to the 

expenses associated with processing a received task from 

IoT/MCS users to the cloud is determined by factors such 

as the demand cost for processing the incoming task, 

which can be calculated based on the cost of utilizing the 

CPU, memory expenses, and the cost incurred by 

bandwidth consumption. Essentially, it reflects the 

financial aspects of executing tasks efficiently within the 

cloud-fog system. The cost of task execution when task 𝑇𝑖  

runs on virtual machine 𝑅𝑗 can be computed using Eq. (11), 

and the overall cost can be calculated using Eq. (15). 

C. Throughput 

The throughput in the context of cloud-fog task 
scheduling refers to the rate at which tasks are processed 
and completed within the Cloud-Fog. It measures the 

efficiency of the scheduling system in terms of how many 
tasks it can successfully execute in a given makespan. 
Higher throughput indicates that the system can handle a 
larger volume of tasks, improving overall performance and 

responsiveness. Essentially, throughput is a critical metric 
for evaluating the efficiency of task scheduling algorithms 
in cloud-fog systems and is calculated as follows [26]. 

Throughput =
∑ 𝑆𝑇 

Makespan
                       (42) 

where ST represents the count of tasks that have been 

completed successfully. 

D. Performance Improvement Ratio (PIR%) 

The PIR metric is utilized to evaluate the effectiveness 

of a PSO-OL approach by considering the reduction in 

execution time. Consequently, it is regarded as an 

important measure for evaluating the algorithm's 

effectiveness. The mathematical calculation of the PIR 

metric is presented as follows [27]. 

PIR% =
Makespan𝑥  − Makespan𝑃

Makespan𝑥
× 100%               (43) 

where Makespan
𝑥

 is the makespan obtained from xth 

algorithm and Makespan
𝑃

 is the makespan obtained from 

the proposed algorithm. 

VIII. EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, a set of experiments was performed in 

order to evaluate the effectiveness of the PSO-OL 

scheduling algorithm in comparison to state-of-the-art 

algorithms, both heuristics and metaheuristics. The 

assessment covered several aspects, including makespan, 

total execution cost, throughput, and PIR. 

A. Experimental Setup 

In order to evaluate the effectiveness of the proposed 

approach and analyze the results, CloudSim is an open-

source framework tool that was developed in Java [28, 29] 

and is used for the purpose of establishing and simulation 

an integrated cloud-fog environment, encompassing cloud 

and fog nodes, along with a constrained number of service 

requests pertaining to IoT applications. All experiments 

were conducted on a single machine with the 

characteristics displayed in Table IV. 

TABLE IV: SIMULATION ENVIRONMENT ATTRIBUTES 

Variable Characteristics 

Simulator version CloudSim V-5.0 

JDK 11 

Machine characteristics 
Intel(R)-Core i7-10750 H, CPU  (2.6 
GHz), (2.59) GHz. 

16 GB Memory and HD one TB 

The cloud-fog system is accountable for executing all 
requests from IoT/MCS users. Cloud and fog nodes vary 
in terms of their processing capabilities and resource usage 
costs. We assumed regarding the processing capabilities of 
each node which is represented by their processing rate 
measured in MIPS. Additionally, we considered factors 
like CPU, RAM, and bandwidth usage costs.  

In the fog layer, nodes like routers, gateways, 
workstations, or personal computers have limited 
processing capacity. On the other hand, in the cloud layer, 
servers or virtual machines located in high-performance 
data centers handle tasks. Consequently, cloud nodes have 
significantly higher processing speeds compared to fog 
nodes. In contrast, utilizing resources in the cloud is more 
expensive compared to the fog. These expenses are 
quantified using Grid Dollars (G$), a virtual currency used 
in the simulation to represent real-world monetary costs. 

B. Analysis of the Experimental Results 

In this subsection, we present the experiments 
performed to evaluate the PSO-OL scheduling method and 
provide an analysis of the obtained results in two scenarios. 

 Scenario 1: Effective of PSO-OL in Optimize Leader 

To evaluate the effectiveness of the proposed method 
PSO-OL in finding the best leader due to the fact that all 
particles are attracted toward the swarm leader. So, having 
a high-quality leader can make the search process more 
efficient, and this is reflected in improving the fitness 
function and thus improving the overall scheduling system. 
In this case, we tried 400 tasks and 25 VMs. The number 
of particles is 100 and the number of total iterations is 250 
as shown in Table V. The results for 10 runs show the 
effectiveness of the proposed method in finding the best 
leader in each iteration compared to the traditional PSO 
algorithm as shown in Fig. 9, where in each run the number 
of optimized leaders is illustrated in the y-axis. It is clear 
that the proposed method for finding the best leader is very 
effective, as it overcame the traditional PSO algorithm in 



finding a leader with a better fitness function, as in Fig. 10, 
which shows the percentage of improvement.  

TABLE V: EFFECTIVENESS TEST ATTRIBUTES 

Variable Parameters 

No. of tasks 400 

No. of VMs 25 

No. of particles 100 

Total iterations 250 

No. of run 10 

 

 
Fig. 9. The optimized leaders. 

 
Fig. 10. The percentage of leaders improvement. 

 Scenario 2: Cloud-fog task scheduling 
To evaluate the effectiveness of the PSO-OL algorithm, 

we conducted comparisons with existing methods from the 

literature such as Evolutionary-Task Scheduling 

algorithm )ETS( [17], A Time Cost aware Scheduling 

(TCaS), Modified Particle Swarm Optimization (MPSO) 

and Round-Robin (RR) [13] and  Bee Life Algorithm 

(BLA) [30]. Table VI and Table VII illustrate the cloud 

and fog properties respectively. 

TABLE VI: CLOUD NODES ATTRIBUTES 

Variable Cloud parameters Unit 

Nodes number 3 node 

CPU speed [3000, 5000] MIPS 

The cost of CPU utilization [0.7–1.0] G$/s 

cost for Memory utilization [0.02–0.05] G$/MB 

cost for Bandwidth utilization [0.05–0.1] G$/MB 

TABLE VII: FOG NODES ATTRIBUTES 

Variable Fog parameters Unit 

Nodes number 10 node 

CPU speed [500–1500] MIPS 

The cost of CPU utilization [0.1–0.4] G$ /s 

The cost of Memory utilization [0.01–0.02] G$ /MB 

The cost of Bandwidth 

utilization 
[0.01–0.02] G$MB 

For simulation, a total of 11 datasets were generated, 

with varying number of tasks varying from 40 to 500 tasks. 

These tasks within the datasets were created using random 

generation, and their attributes were determined in 

accordance with the specifications shown in Table VIII. 

Table IX presents algorithm attributes. 

TABLE VIII: IOT/MCS TASKS ATTRIBUTES 

Variable Parameters Unit 

Length [1000–100000] MI 
Memory required [50–200] MB 
Size of input file  [10–100] MB 

Size of output file  [10–100] MB 

TABLE IX: ALGORITHMS ATTRIBUTES.  

Variable BLA TCaS MPSO ETC PSO-OL 

Run count 30 30 30 10 30 

Population 

size (ℕ) 

queen 1 

100 100 100 100 

drones 

(D) 

30 

Workers 

(W) 

69 

Crossover rate (𝛼) 90% 90% - 0.5 0.8 

Mutation-rate (𝛾) 0.01 0.01 - 0.1, 0.3 - 

c1, c2, w - - 

c1 = c2 = 
1.5 

w = 0.9–

0.1 

- 
c1 = c2 = 1.5 

w = 0.9–0.1 

Iterations number 500 500 500 500 500 

 

In this scenario, we have preserved a fixed number of 

VMs,10 as cloud, and 3 as fog), while the processing 

capacity required to complete each user-assigned task may 

vary. We generated a set of tasks randomly, with the 

numbers of tasks ranging from 40 to 200, increasing in 

intervals of 40, and from 200 to 500 increasing in intervals 

of 50 using a random dataset.  

For the purpose of evaluating the performance of the 

proposed PSO-OL approach in this scenario, we have 

taken multiple metrics into consideration. These metrics 

are makespan, Cost, throughput, and performance 

improvement ratio. 

Fig. 11 illustrates the result of the comparison of the 

proposed approach PSO-OL in the makespan measure. 

There was a total of 13 VMs utilized in this experiment, 

and the system was received 40, 80, 120, 160, 200, 250, 

300, 350, 400, 450, and 500 of IoT/MCS tasks. After 

testing the random datasets over 500 generations and in 

order to mitigate the influence of uncertain factors on the 

experimental results, every experiment is carried out 30 

times, and take the average to provide a more reliable 

assessment. The experimental results demonstrate that the 

PSO-OL approach achieved a more notable reduction in 

the average makespan when compared to the RR, BLA, 

MPSO, ETS, and TCaS. 

In our experiments, we set a value of 𝛼 and 𝛽 to 0.5, 

meaning that makespan and resource utilization have the 

same importance in the fitness function. The PSO-OL 

approach achieves the shortest makespan by optimizing 

0

5

10

15

20

25

30

35

40

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

N
u

m
b

er
 o

f 
it

er
at

io
n

s 
as

 l
ea

d
er

Standard PSO leader CGbF leader CGbs leader

15%

40%

45% Standard PSO leader

CGbF leader

CGbs leader



the time needed for task completion time. This, in turn, 

leads to a higher level of performance for the PSO-OL 

approach, which is achieved by efficiently mapping tasks 

onto VMs. We conclude, that the PSO-OL demonstrates a 

significant advantage over all other algorithms when 

applied to large datasets. As a result, the algorithm's 

superiority in terms of makespan becomes evident, 

especially in scenarios involving limited resources and 

large task datasets. 

 
Fig. 11. Comparison results of makespan in scenario 2. 

From Fig. 12, it can be concluded that the PSO-OL 

approach showed remarkable performance from the 

makespan perspective on each dataset indicating less 

execution time, therefore, this leads to the whole cost being 

significantly less in the PSO-OL approach than in 

comparison algorithms. For instance, the cost of RR, BLA, 

MPSO, and TCaS was 63026 G$, 62468 G$, 61090 G$, 

and 63750 G$, while that of the PSO-OL approach was 

53987 G$ for the 500 tasks. As the task count decreased, 

also there was a reduction in the overall cost of the 

algorithms. For instance, the overall cost of the RR, BLA, 

MPSO, TCaS, and PSO-OL was 18664 G$, 18324 G$, 

17838 G$, 19043 G$, 16562 G$, respectively, for the 250 

tasks. The primary factor contributing to cost reduction is 

the increased utilization of fog nodes for task execution, as 

opposed to relying heavily on cloud nodes. This cost-

saving advantage stems from the inherently lower cost of 

using fog resources compared to cloud resources. 

Consequently, this approach lowers the expenses 

associated with crowdsensing users requesting cloud-fog 

services. 

 
Fig. 12. Comparison results of cost in Scenario 2. 

Fig. 13 illustrates a comparison of throughput achieved 

by the PSO-OL algorithm, alongside RR, BLA, MPSO, 

ETS, and TCaS algorithms, using a synthetic dataset. The 

horizontal axis represents the number of IoT/MCS tasks, 

while the vertical axis signifies the throughput parameter. 

The simulation results demonstrate that the PSO-OL 

algorithm outperformed all other algorithms in terms of 

throughput. The experimental results displayed that the 

PSO-OL algorithm achieves a better throughput 163.07%, 

42.71%, 37.76%, 38.35%, and 13.29% when compared 

with other algorithms (i.e., RR, BLA, MPSO, ETS, and 

TCaS) in number of tasks 500. These results confirm the 

PSO-OL algorithm is effectiveness and this indicates the 

stability of the proposed method and concluded that the 

proposed approach effectively balances the workload, 

ensuring that no single server becomes overloaded. 

 
Fig. 13. Comparison of throughput in Scenario 2. 

The percentage of PIR for our approach PSO-OL 

depending on makespan as it relates to the RR, BLA, 

MPSO, ETS, and TCaS algorithm is presented in Fig. 14 

for the random workload, the results demonstrate that the 

PSO-OL approach produces 68.38–62.00, 46.62–29.92, 

37.14–27.42, 44.69–27.69 and 13.48–11.71 makespan 

time improvements over the RR, BLA, MPSO, ETS, and 

TCaS respectively in case of task a 40 and 500. 

In terms of the number of tasks that have been executed, 

we find that the fog nodes execute a larger number of the 

tasks received by them compared to the cloud nodes, and 

this is good to think about introducing the concept of fog 

with the cloud, which is reflected in a significant reduction 

in the cost, because the costs of using fog VMs are cheaper 

than the costs of using cloud VMs as shown in the Fig. 15. 

The superior performance of PSO-OL in comparison to 

other algorithms can be attributed to its ability to avoid 

getting trapped in local optima. This is achieved through 

the mentioned modifications which strengthened the 

exploration and exploitation phases, enabling it to find 

optimal solutions within a reasonable timeframe for task 

scheduling. 



 
Fig. 14. PIR (%) on makespan comparison in Scenario 2. 

 
Fig. 15. Tasks executed in each layer for PSO-OL. 

IX. CONCLUSIONS AND FUTURE WORKS 

This paper proposed a new variant of PSO to address 

task scheduling challenges in cloud-fog computing for 

IoT/MCS applications. The cloud-fog broker in this work 

was responsible for analyzing, estimating, and scheduling 

all transmission requests generated from edge devices to 

be executed within the cloud-fog system. The proposed 

PSO-OL algorithm performed in the scheduling of tasks, 

and the results indicate that the proposed algorithm 

exhibits improved global search capability compared to the 

traditional PSO algorithm. This enhancement helps 

prevent the traditional PSO algorithm from getting trapped 

in local optima. PSO-OL was proposed with the objective 

of minimizing makespan, improve resource utilization and 

increasing throughput to enhance QoS goals. To evaluate 

the effectiveness of the proposed PSO-OL algorithm in 

achieving these objectives, a simulation was conducted, 

comparing its performance with that of existing state-of-

the-art algorithms. The results from the simulation 

demonstrated that the proposed PSO-OL outperformed the 

competing algorithms. This demonstrates its capability to 

effectively manage the significant increases in request 

generation from IoT devices and effectively allocate tasks 

to resources. The proposed approach can also be applied in 

areas other than task scheduling. As a future work, this 

work can be enhanced by introducing machine learning 

techniques in addition to using other optimization 

techniques with PSO, also applied to real-world data sets. 
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