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Abstract—Resistance Spot Welding (RSW) is a key 

technology for joining car body parts. During the process, the 

upper and lower electrodes of the welding gun are subject to 

wear, which affects the electric current flow and thus, the 

quality of the spot weld. To counteract this effect, the 
electrode tip is dressed after a predefined number of spot 

welds. The frequency for tip dressing is based on experience 

and does currently not directly reflect the actual state of the 
electrode. This work provides an approach to inline electrode 

state monitoring to determine the ideal and demand-based 

point in time for electrode tip dressing based on process data. 

We avoid costly and time-intensive experimental labeling of 
electrode states and utilize changes in the dynamic electrical 

resistance between dressing cycles to represent the electrode 

wear state. To describe the changes in the dynamic electrical 

resistance curve, new features such as the peak time delay are 
calculated and visualized. We evaluate our approach with a 

real-world data set that stems from a dynamic and complex 

environment out of a series production line, which, in 
contrast to laboratory data, ensures a successful application 

of the proposed methods in an industrial setting. 

Index Terms—industrial data analytics, resistance spot 

welding, electrode wear state monitoring, feature 

construction, data mining 

I. INTRODUCTION 

Resistance spot welding (RSW) is a key joining 

technology in automotive manufacturing and is 

characterized by a high degree of automation and 

robotization [1]. In a typical body shop, several hundred 

industrial robots produce over 5,000 spot welds per vehicle. 

During the RSW process, two or more overlapping metal 

sheets are clamped together by a welding gun, and an 

electric current is induced through the electrodes [2]. The 

generated electric circuit produces an electrical resistance 

between the work pieces, and the obtained heat results in 

local melting, thus forming a coalescence [2]. 

 

 
Fig. 1. A typical DERC with five welding phases according to 

Dickinson et al. [3] and stationary points. 

A typical dynamic electrical resistance curve (DERC) is 

given in Fig. 1, where five welding phases can be 

described according to Dickinson et al. [3]. In the first 

phases, the applied force and an initial generation of heat 

break down surface contaminants, e.g., adhesive residue. 

This results in an initial sharp electrical resistance drop in 

the second welding phase. The contact area of the metals 

increases, and the first resistance minimum is reached. 

This is due to the softening of asperities, i.e., high spots on 

the sheet metal’s surface. In the fourth phase, the electrical 

resistance increases and melting starts. A second resistance 

peak is reached, and the temperature begins to stabilize 

while the weld nugget, which is formed from molten 

material, grows and mechanical collapse starts to dominate. 

This results in a decrease in the electrical resistance in the 

fifth phase. 

During the welding of galvanized sheet steel, alloying 

elements of the zinc coating agglomerate on the surface of 

the electrode tips. Thermal and mechanical loads cause the 

electrodes to gradually deform, leading to electrode tip 

growth. This effect is also referred to as mushrooming and 

impacts the current flow and, as a result, the nugget size 

and quality of the spot weld [2]. As a consequence, the 

electrode tip is milled or dressed to its original shape after 
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a predefined number of spot welds. The shorter the interval 

for tip dressing, the more cumulated maintenance time is 

required, leading to frequent production delays to replace 

worn electrodes. The frequency for tip dressing is based on 

experience and does not reflect the actual state of the 

electrode. Furthermore, a generic number for the amount 

of spot welds between tip dressing is set for several 

welding machines even though the electrode state is 

affected by various factors, such as the welding material or 

the welding equipment, and fluctuates greatly even with 

the same welding parameters [4, 5]. Therefore, the 

frequency of tip dressing is chosen in a preventive and 

pessimistic manner. This results in unused potential and 

resources for the electrode itself, as well as energy for the 

subsequent milling of the electrode tip is wasted. Inline 

condition monitoring of the electrode state enables 

adaptive and demand-based electrode tip dressing, thus 

utilizing the missed potentials. The transparency of the 

RSW process increases, which enables the detection of 

abnormal behavior. This provides the foundation for a 

feedback control system to avoid the manufacturing of 

spot welds that do not meet the required quality. 

Body shops of large automotive manufacturers are 

characterized by highly automated and complex 

production environments where up to 3.5 million spot 

welds are produced daily. The utilization of gradually 

increasing internet of things (IoT) data enables 

optimization where conventional methods reach their 

limitations. Data-based approaches allow non-destructive 

online monitoring of complex processes and their 

components [6]. Monitoring the electrode state increases 

process reliability and stability, and once implemented, the 

methodology can be transferred to hundreds of industrial 

robots of a comparable type and even to other use cases 

and production plants. The applicability of our work 

enables a feedback control system to produce spot welds 

that meet the required quality. Our work serves as an 

example for similar robotized manufacturing processes. 

In this work, we propose an approach to inline condition 

monitoring for the electrode state based on changes in the 

DERC. We apply, amongst others, methods presented in 

[5]. In contrast to Zhou et al. [5], we apply the methods to 

real-world process data. The peak time delay in the fourth 

welding phase and the weighted shape change factor 

(WSCF) can describe the wear of the electrode state. 

However, the trend change factor (TCF) and the resistance 

decrease ratio are fluctuating strongly and a clear trend is 

not visible. Therefore, we compare the methods presented 

in [5] to conventional time series similarity methods and 

generate additional features to describe the electrode state. 

We show that a combination of carefully selected features 

can describe the electrode state in real-world process data 

and that changes in the DERC are visible even over series 

of 120 spot welds. We apply an unsupervised machine 

learning (ML) approach that does not require expensive 

experiments and data labeling. Data mining with real-

world process data ensures that our approach is directly 

applicable in an industrial setting. This enables the 

deployment and integration of condition monitoring of the 

electrode state in current processes. 

The paper is structured as follows. In the next section, 

related work on condition monitoring of the electrode state 

is discussed. In Section III, the data set is introduced. 

Section IV presents experimental results, where we assess 

changes in meaningful points in the DERC (Section IV-A), 

changes considering more features (Section IV-B), and 

lastly compare all features (Section IV-C). The paper 

closes with conclusions and an outlook on future work. 

II. RELATED WORK 

The majority of the research described the electrode 

state based on changes in the electrode length or the 

displacement of the electrodes. The results are mainly 

obtained in an experimental setting and the transferability 

of the methods to real-world use cases is not ensured. 

Zhang et al. [7] and Zhang et al. [8] utilized the positions 

of servo welding guns to measure the change in the 

electrode length and detect electrode wear. Mathiszik et al. 

[9] monitored the change in the electrode length over the 

number of spot welds to determine the electrode wear state. 

The study showed two wear modes—mushrooming and 

plateau formation—and determined, among others, the 

change in the electrode length through the electrode 

position. In comparison to mushrooming, the plateau is not 

an agglomeration of alloying elements, but is formed by a 

consecutive deformation process of the electrode during 

welding. Wang et al. [10] described the electrode wear 

based on changes in the electrode displacement curves 

with a moving range method. In [11] the displacement of 

the electrode tips was directly measured with image 

sequences of markers on the electrode surface and in [12] 

the degree of electrode tip wear was predicted with an ML-

model based on laser measurements of the electrode tip 

and digital images of the spot welds. We could not see 

changes in the length of the electrodes in our data set, and 

perhaps high-precision laser displacement sensors are 

required to measure the changes more accurately. The 

additional cost and complexity of implementing high-

precision laser displacement sensors across all plants limit 

their use. Therefore, our approach is based on changes in 

the DERC. 

In [13], a supervised ML-framework to predict the 

electrode wear based on multiple sensor measurements and 

carbon imprints of the electrode tip was proposed. 

However, to apply the above methods, it is necessary to 

collect a large amount of data using extensive sensory or 

even imaging techniques. The integration of additional 

sensors and equipment into a series production line is 

expensive, time-consuming, and often complex. The ML 

approaches require data labeling, which increases costs 

even further. In comparison, we utilize already existing 

data, provided by fewer sensors that are already present. 

This limits the effort and, as a result, allows a real-world 

application almost immediately. 

Takahashi et al. [14] developed an automatic voltage 

determination system to improve the quality and 

productivity of a resistance welding process. The method 

utilized real-world process data, where the system learned 

to react to electrode degradation based on voltage change 

logs that were generated by experienced operators. Our 



focus, however, lies on the determination and monitoring 

of the electrode state. 

Zhou et al. [5] proposed a novel online monitoring 

method of the electrode wear state based on time series 

similarity and variation patterns of DERCs. The authors 

reduced the dimensionality of the original DERCs and 

presented new features to describe the change in the 

electrode state. According to Zhou et al. [5], the electrode 

state can be divided into three stages: a stable stage, a 

transition stage, and a deterioration stage. Some presented 

features, such as the point in time of the second resistance 

peak fluctuated greatly in the deterioration stage. In 

contrast to Zhou et al. [5], who relied on experimental data, 

we mine time series similarity changes of the dynamic 

resistance series in real-world data from a dynamic and 

complex production environment. This means we treat 

challenges that accompany mining process data and 

consider additional influencing factors. The preceding 

manufacturing steps, e.g., the forming and deep drawing 

of sheet metal components, can produce inconsistent gaps 

between the work pieces. Adhesive residue and other 

surface contaminants can affect the welding quality, and 

preceding welding operations may result in distortions of 

the component. Furthermore, with each tip dressing, the 

cooling channel of the electrode is closer to the contact 

surface of the electrode. Additionally, we need to consider 

modifications in the parameters of the adaptive welding 

controller. The changing conditions can lead to random 

behavior of the dynamic resistance curve and high 

variance between curve features. Earlier research did not 

consider random influencing factors and changing process 

conditions to this extent. We determine robust features to 

describe the electrode state, which ensures its applicability 

in the industry. Moreover, our methods capture change 

patterns over much shorter intervals, which ensures a fast 

application to real-world processes. We also juxtapose the 

presented features against conventional time series 

similarity methods. 

III. DATA SET 

The data set contains 11,400 observations, i.e., process 

information about spot welds and the welding system. The 

data stem from a series production line where a KUKA 

KR240 R2900 ULTRA robot equipped with a welding gun 

repeatedly welds five spot welds along a longitudinal beam 

of the vehicle body. The materials of the joined body parts 

are two hot-dipped galvanized steel plates with a thickness 

of 2.0 and 1.2 mm, respectively. The welding process is 

performed with a BOS 6000 welding controller from 

Bosch Rexroth. An optimal DERC is generated in the 

development phase and serves as a reference to the 

welding controller. In adaptive mode, the controller aims 

to map the reference DERC by adjusting the welding 

parameters. The controller has an internal wear counter 

variable where each welding process is counted. After 120 

spot welds, the electrode tips are dressed, and the counter 

is set to zero. After 55 dressing intervals, the electrodes are 

replaced. 

For every observation, the data set contains an electric 

current and voltage curve over the welding time in 1.0 ms 

time steps. The welding time ranges from 489 to 655 ms, 

with a median of 500 ms and 75 % of the observations 

having a welding time less or equal to 505 ms. The electric 

current and voltage curves, the deposited reference DERC, 

and singular features such as welding gun parameters and 

electrode parameters are passed on via message queuing 

telemetry transport (MQTT), a messaging protocol used 

for machine-to-machine communication. 

IV. RESULTS AND DISCUSSION 

The objective of this work is to apply and propose 

practical methods to monitor the change in the dynamic 

resistance between dressing intervals. We derive 

relationships and coherence between the observed changes 

and the electrode state. The findings are consistent with 

previous research results, where in particular the methods 

of Zhou et al. [5] have proven helpful. It can be concluded 

that the dynamic resistance series changes regularly. The 

peak resistance in the fourth welding phase (second 

resistance peak in Fig. 1) decreases gradually, and the 

corresponding point in time increases with a rising number 

of spot welds. This is mainly due to the electrode tip 

diameter gradually growing and the current density 

gradually decreasing. As a result, the rising speed of the 

dynamic resistance series at the initial stage is gradually 

reduced, leading to a regular change in the dynamic 

resistance series (Fig. 2).  

 

 
Fig. 2. Comparison between the reference DERC, the mean DERC for 
the first five spot welds, the mean DERC for the 18th to the 22nd spot weld, 

and the mean DERC for the 116th to the 120th spot weld. 

A typical DERC consists of around 500 measured 

resistance values. To reduce computational costs and 

neglect non-meaningful information, the dimension of the 

DERC is reduced in two manners. In the first approach, 

only meaningful points such as the first resistance 

minimum and second resistance peak and their 

corresponding points in time are calculated, and the rest of 

the curve is neglected (Section IV-A). The second 

approach regards more points of the DERC (Section IV-

B). We calculate the dynamic electrical resistance decrease 



ratio and the TCF and WSCF according to Zhou et al. [5]. 

Furthermore, we compare the features to conventional 

time series similarity methods, such as the Dynamic Time 

Warping Distance (DTWD), the trapezoidal area under the 

resistance curve, and the Fréchet distance. 

We aim to find robust features to describe the electrode 

state and show a clear trend over the number of spot welds. 

The objective is to derive relationships and coherence 

between the observed changes and the progressing 

electrode degradation. Computational costs should be kept 

to a minimum, without missing meaningful information. 

We show that the WSCF, the change in meaningful points 

of the DERC, and the DTWD are suited to describe the 

electrode wear state (Section IV-C). With the application 

to real-world process data we consider additional 

influencing factors and ensure that our methods can be 

applied in an industrial setting for inline condition 

monitoring of the electrode state. 

A. Changes in Meaningful Points in the DERC 

In the first approach, we determine stationary points in 

the DERC. Fig. 2 shows mean DERCs with their stationary 

points over different welding numbers. The first resistance 

minimum and the second resistance peak, as well as their 

corresponding points in time are calculated. 

In Fig. 3, the point in time of the second resistance peak 

is depicted over all 120 spot welds. The resistance series 

shows a periodic pattern of change over the five positions 

of the spot welds along the component. Therefore, the 

moving average with a window size of five is calculated to 

visualize the trend over all 120 spot welds. Since the 

moving variance decreases with an increasing amount of 

spot welds, we can assume that the welding is still in a 

stable stage and the electrode is not yet worn. This 

indicates that the tip dressing interval can be increased. 

The delay of the point in time of the second resistance peak 

is valid for each of the five positions of the spot welds 

along the component.  

 

 
Fig. 3. Point in time of the second resistance peak in the fourth welding 
phase. Depicted for all five positions of the spot welds along the 

component over the dressing interval. 

 
Fig. 4. Mean values for points in time of the second resistance peak of 

spot welds with and without weld time extensions, and the mean values 
of all spot welds. Only one welding position on the component is depicted 

over the dressing interval. 

In Fig. 4, the point in time of the second resistance peak 

over all 120 spot welds is depicted for one of the five spot 

weld positions, and the same pattern can be observed. This 

is also valid for DERCs, where a weld time extension is 

assigned automatically by the adaptive mode of the 

welding controller. 

Our results coincide with the findings of [5] and a mean 

time delay of 17.5 ms of the second resistance peak can be 

observed towards the end of the interval compared to the 

reference DERC. The moving variance drops from 792.6 

to 282.2 towards the last spot welds. Zhou et al. [5] showed 

that the point in time of the second resistance peak 

fluctuates greatly when the influence of random factors 

such as contact surface alloying and surface pitting, where 

material is removed from the electrode tip face, begins. 

Therefore, we can safely assume that the electrode state is 

still in a stable phase.  

To compare further features, we calculate the moving 

average with a window size of five over all 120 spot welds 

and apply the standard scaler by means of the Python 

package scikit-learn. In Fig. 5, further features regarding a 

singular point in the resistance curve are shown. We 

analyze the value of the first resistance minimum and the 

point in time of the first resistance minimum, and the value 

of the second resistance peak. The dynamic resistance 

values at the first resistance minimum and second 

resistance peak are increasing at first. The resistance 

values at the first resistance minimum are starting to 

decrease after the 22nd welding procedure. The resistance 

values of the second resistance peak start to decrease after 

the 51th welding procedure. Both values then decrease until 

the end of the interval at 120 spot welds. The 

corresponding time values are increasing continuously. It 

can be assumed that the first resistance minimum and 

corresponding time are influenced by random conditions 

like surface contaminants and the distance between the 

components, leading to higher fluctuations. Therefore, the 

second resistance peak and the point in time of the second 



resistance peak are more suitable for condition monitoring. 

Here, random surface contaminants are already broken 

down, and the softened asperities result in increasing 

metal-to-metal contact, causing a steady current flow.  

 
Fig. 5. Moving average for normalized features (second resistance peak 
and point in time of the second resistance peak, first resistance minimum 

and point in time of the first resistance minimum) over the number of spot 
welds. 

B. Changes in the DERC Considering More Features 

Describing the changes in the DERC with only one 

point with two values may result in the loss of a significant 

amount of information. Therefore, further features are 

calculated based on a lower dimension of the DERC. We 

examine the resistance decrease ratio, which describes the 

ratio between the peak in the fourth welding phase and the 

resistance end value, the WSCF, and the TCF according to 

Zhou et al. [5]. Additionally, we compare our results to 

methods considering the whole resistance curve, where we 

apply trapezoidal numerical integration to calculate the 

area under the resistance curve. We further calculate the 

Fréchet distance and the DTWD between resistance curves. 

The WSCF describes a weighted Euclidean distance 

between reduced representations (in our case, 18 equally 

spaced points between a welding time of 0 and 487 

Milliseconds in 27 Milliseconds time steps) of the DERC 

and the reference DERC and is defined according to Zhou 

et al. [5] as  

WSCF(𝑟𝑘 , 𝑟ref) ≔ √∑𝑤𝑖 ∙ (𝑟𝑖
𝑘 − 𝑟𝑖

ref)2,

18

𝑖=1

 

where 𝑟𝑘 = (𝑟1
𝑘 , … , 𝑟18

𝑘 ), 𝑟ref = (𝑟1
ref, … , 𝑟18

ref)  represent 

the 18 points of the two curves, and 

𝑤𝑖 ∶= (1 + exp (−
𝑖 − 2

4
))

−1

 

is the gradually increasing weight; thus, a greater focus is 

laid on the end of the reduced DERC. To remove noise, we 

apply the Savgol filter and normalize the DERC with the 

Z-score normalization method before reducing the curve 

to 18 resistance and time values. In contrast to Zhou et al. 

[5], we calculate the WSCF between the reference DERC 

and the dynamic resistance series over 120 spot welds. 

Fig. 6 shows the scattered mean values of the WSCF over 

the number of spot welds and the moving average over a 

window size of five. The WSCF fluctuates stronger in the 

initial stage with a value of 1.6 and, after reaching a local 

minimum of 1.4 at the 15th spot weld, gradually increases 

over the number of spot welds. A maximum of 1.77 is 

reached at the 120th spot weld. 

 
Fig. 6. The mean WSCF over all 120 spot welds with the moving average 
and the moving variance. 

We compare the WSCF to further features calculated 

with more than a single point of the resistance curve. The 

normalized moving averages of some of the generated 

features are visualized in Fig. 7. We compare the WSCF, 

the TCF, the resistance decrease ratio, the trapezoidal area 

under the resistance curve, the Fréchet distance and the 

DTWD to the reference curve. The WSCF and the DTWD 

show a clear trend over all 120 spot welds, whereas the 

other higher dimensional features fluctuate greatly, and the 

changing process of the electrode state is therefore not 

clear. 

 
Fig. 7. Moving average for normalized higher dimensional curve features 

(WSCF, TCF, trapezoidal area under the DERC and the DTWD) over the 
number of spot welds. 



C. Comparison of All Features 

Our analysis reveals that the WSCF, the DTWD, the 

second resistance peak, and the point in time of the second 

resistance peak are suitable to describe the electrode state. 

The second resistance peak increases until the 51st spot 

weld and then decreases towards the end of the interval 

without significant fluctuations. The point in time of the 

second resistance peak reaches a minimum at the 12th spot 

weld and then increases gradually over the number of spot 

welds. The WSCF reaches a minimum at the 18th spot weld 

and gradually increases over the number of spot welds 

without significant fluctuations. Similar characteristics can 

be observed for the DTWD. In contrast, the TCF, the 

Fréchet distance, the resistance decrease ratio or the 

trapezoidal area under the resistance curve fluctuate 

significantly and a clear trend over the number of spot 

welds is not visible. Therefore, these features are not 

suitable for condition monitoring of the electrode state in 

the presented use case. 

Our findings regarding the delay in the point in time of 

the second resistance peak and the behavior of the WSCF 

are in agreement with Zhou et al. [5], who showed that 

these features are appropriate to monitor the electrode state. 

The second resistance peak carries meaningful 

information about the welding quality. Hence, it is 

necessary to include the feature in condition monitoring. 

We find that conventional time series similarity methods, 

such as the DTWD, show good results and, by considering 

all points of the DERC, we ensure that no information is 

missed. In case computational costs and latency are 

secondary requirements, the DTWD can be included in 

condition monitoring. 

Our findings enable domain experts to define thresholds 

at which tip dressing is required. Due to the position of the 

spot weld and random noise, feature values still fluctuate 

between subsequent spot welds. Therefore, thresholds for 

the moving average of the feature values are generally 

better suited to define the point in time for tip dressing. 

V. CONCLUSION AND FUTURE WORK 

The RSW process is characterized by complex behavior, 

and patterns in the data are difficult to detect. Noise and 

random effects in the DERC hamper the monitoring of the 

electrode wear state. Additionally, in real-world process 

data, the configurations of the welding controller, such as 

the weld time extension, must also be considered. We 

assess the wear state of the electrodes indirectly by mining 

dynamic resistance data. We show that the proposed 

methods are suitable for monitoring the electrode wear 

state in an industrial setting. The electrode wear process 

can be visualized by calculating the similarity of the 

dynamic resistance series between subsequent welding 

points and the reference resistance curve. Based on the 

analysis of our methods and comparison to the findings of 

Zhou et al. [5], the change in the electrode state in this 

study is still in a stable phase. This indicates the unused 

potential of the electrodes and would allow further welding. 

Future work will concentrate on the application of the 

methods to further welding robots, where more complex 

components and a higher variety of component types are 

welded. Our work also forms the basis for a feedback 

control system to manufacture spot welds that meet the 

required quality. In case an abnormal behavior in the 

electrode state is detected, the feedback control system can 

prevent loss in quality, for instance, through the timely 

initiation of the tip dressing process. Since the robots and 

control units are of comparable type, the feedback control 

system can be transferred to several hundred industrial 

robots in the same production line and even to other 

production plants. We will also focus on describing the 

remaining variance between subsequent spot welds to 

establish a more robust solution for electrode condition 

monitoring. 
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