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Abstract—This paper introduces a real-time system for 

recognizing hand gestures using Python and OpenCV, 

centred on a Convolutional Neural Network (CNN) model. 

The primary objective of this study is to address the 

challenge of recognizing hand gestures in varied and 

complex environments. The proposed approach employs 

several image and video processing techniques, including 

data augmentation and feature extraction, to segment the 

hand region and extract relevant features. The system’s 

performance is significantly improved by adding to the 

original training dataset, resulting in 5,000 images with 500 

images per gesture, as shown by the evaluation metrics 

indicating a substantial increase in accuracy from 96.9% to 

99.2%. This paper aims to provide feasible and economical 

solutions for utilizing robots in industrial settings, while also 

proposing future research possibilities for enhancing 

human-robot interaction through methods such as 

incorporating hand gesture recognition.  

Index Terms—Convolutional neural networks, computer 

vision, deep learning, hand gesture recognition, human-

robot interaction 

I. INTRODUCTION 

Hand Gesture Recognition (HGR), has grown in 

popularity in recent times as an interesting research area. 

It has reformed the manner of human-computer 

interaction by allowing natural and spontaneous 

communication through hand movements. One such 

application involves facilitating communication for 

disabled individuals by translating hand signs into spoken 

words, thereby bridging the communication gap [1]. In 

the field of medical rehabilitation, hand gesture 

recognition plays a crucial role in monitoring and 

evaluating hand movements, aiding in the recovery 

process [2]. It contributes to the enhancement of gaming 

and augmented reality experiences by providing natural 

and intuitive gesture control, which results in more 

immersive interactions [3]. In daily life, this technology 

simplifies the management of home appliances, allowing 

users to effortlessly operate those using gestures such as 

tapping, swiping, or rotating [4]. In the field of industrial 
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automation, hand gesture recognition enables precise and 

efficient control of robots and Unmanned Aerial Vehicles 

(UAVs) through gestures, thereby streamlining various 

industrial processes [5, 6].  

Various sensors, such as gloves [7], joysticks [8], 

electromyography (EMG) signals [9], inertial 

measurement units (IMU) [10], and cameras [11], could 

be employed for HGR. Camera-based HGR has gained 

significant popularity among these sensors due to its non-

intrusive nature and lack of physical contact. This 

approach utilizes cameras to capture hand movements 

without any external disruption. However, camera-based 

HGR is faced with challenges such as occlusion, 

variations in illumination, background interference, and 

changes in hand positioning, hence, necessitating ongoing 

research and improvement. 

In the early stages of hand gesture recognition research, 

pioneers devised different methodologies to overcome the 

obstacles associated with hand detection and  

tracking [12]. Two notable approaches emerged: data 

gloves and marker-based methods [13, 14]. Data gloves 

are wearable devices equipped with sensors, including 

flex sensors, accelerometers, and gyroscopes, enabling 

precise measurement of hand articulation and orientation. 

Marker-based methods involved affixing markers or 

fiducial markers onto the user‘s hands, which were 

subsequently tracked by cameras or optical sensors. By 

monitoring the marker‘s position and movement, these 

techniques facilitated the accurate determination of hand 

gestures. Despite their effectiveness, these approaches 

required additional equipment and often proved 

uncomfortable for users. Consequently, early research 

efforts paved the way for the development of more 

convenient and non-intrusive vision-based gesture 

recognition systems. These advanced systems utilized 

cameras to detect and track hand movements without the 

need for wearables or markers, marking a significant 

milestone in HGR innovation. 

Robot Control based on hand gesture recognition has 

become particularly important in industrial hazardous 

environments such as mining sites, nuclear plants, and 

chemical reaction facilities, where operators need a safer 

and more efficient way to control machines. Recognizing 

hand gestures in these hazardous environments, pose a 
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significant challenge due to the complexity and 

unpredictability of such environments. These robotic 

systems must operate in challenging conditions like poor 

lighting, cluttered spaces, and sudden changes in 

temperature, pressure, and humidity, creating a difficult 

scenario in developing a robust hand gesture recognition 

system that can withstand unpredictable events. 

Conversely, hand gestures could as well be occluded by 

other objects or body parts, affected by varying lighting 

conditions, background clutter, or distorted by camera 

noise or motion blur. On this premise, the paper seeks to 

address the issue by enhancing the accuracy of the 

existing Convolutional Neural Network (CNN) model 

using diverse hand gesture datasets from American Sign 

Language (ASL) which contains 700 images from 5 

individuals, with variations in lighting conditions and 

hand postures 

II. LITERATURE REVIEW 

Smart gloves have received considerable attention as a 

plausible solution for interfaces involving vision and 

voice interaction. However, their practical 

implementation is frequently impeded by the trade-off 

between functionality, performance and cost due to 

limitations and inaccuracy of hand gesture recognition, 

both in static and dynamic gestures. In an effort to 

address these challenges, Gu et al. [15] proposed a 

wireless smart glove-based interface. Their approach 

utilized an all-recyclable, ultra-stretchable sensing fibre 

composed of liquid metal and thermoplastic materials. 

This innovation enabled highly accurate static and 

dynamic hand gesture recognition by ensuring high skin 

compliance and scalability. 

Camera-based HGR approaches often face challenges 

associated with noise impact, gesture feature extraction, 

and the utilization of continuous gesture time sequential 

information. Addressing these issues, Wang et al. [16] 

proposed a time sequential inflated 3 dimensions (TS-I3D) 

convolutional neural network approach for HGR, 

utilizing Frequency Modulated Continuous Wave 

(FMCW) radar sensors. Their method effectively 

extracted range and speed change information from 

Range-Doppler Maps (RDMs) generated by the FMCW 

radar, leading to a high average recognition accuracy rate. 

Static HGR, whether user-dependent or user-

independent, can be particularly challenging, especially 

in scenarios involving lighting changes, hand position 

variations, and complex backgrounds. To overcome these 

difficulties, authors of [17] proposed a recognition 

method that leverages image descriptors such as Gradient 

Local Auto-Correlation (GLAC), Gabor Wavelet 

Transform (GWT), and Fast Discrete Curve Transform 

(FDCT). Dimensionality reduction through Principal 

Component Analysis (PCA) further enhances their 

approach. Remarkably, their study achieved exceptional 

results, with 100% accuracy for user-independent 

gestures and 98.33% accuracy for user-dependent 

gestures. 

To overcome on-site environmental disturbances such 

as poor illumination, fog, and dust affecting hand gesture 

recognition, the authors of [18] focused on thermal 

image-based hand gesture recognition for worker-robot 

collaboration in the construction industry. Their 

experimental results indicated that thermal images 

demonstrate robustness under different lighting 

conditions. 

The use of Recurrent Neural Networks (RNNs) is 

particularly advantageous in the analysis of hand gestures 

represented as sets of feature vectors that change over 

time. Avola et al. [19] took advantage of this feature and 

applied RNN to model the contextual information that is 

embedded in the temporal sequence of hand gesture 

feature vectors. Their method involved capturing finger 

bone angles using a leap motion controller sensor, and it 

achieved remarkable accuracy, exceeding 96% when 

tested on a challenging dataset of American Sign 

Language gestures. 

Traditional RNNs may face difficulties in recognizing 

dynamic gestures due to their restricted capacity for 

processing data in a single direction. To address this 

constraint, Lin et al. [20] introduced a gesture recognition 

technique and device that exploit light sensing 

characteristics. By utilizing the photoelectric sensing 

capability of LED screens, their proposed method 

eliminated the need for external sensors. The system 

incorporated Field-Programmable Gate Array (FPGA) 

control and deep learning analysis, employing static 

bidirectional long short-term memory (S-Bi-LSTM) for 

static gestures and an optimized dynamic bidirectional 

long short-term memory (D-Bi-LSTM) for dynamic 

gestures. Experimental results demonstrated remarkable 

accuracy for dynamic gestures. 

An intriguing area of research in HGR is the use of 

Electrical Impedance Tomography (EIT) to analyze 

impedance changes within the arm, allowing for the 

inference of muscle contractions. In [21], Li et al. 

developed a system that utilized EIT to detect muscle 

contractions and recognize hand signs. This system 

encompasses an electronic interface, an image 

reconstruction algorithm, a CNN classifier, and a virtual 

hand model. Impressively, their approach achieved high 

accuracy in recognizing American Sign Language (ASL) 

numbers, surpassing the performance of the Support 

Vector Machine (SVM) classifier. Table I shows the 

recognition accuracy comparison with the conventional 

studies. 

TABLE I: RECOGNITION ACCURACY COMPARISON WITH PREVIOUS STUDIES 

Method Accuracy Result Limitation 

Wireless smart glove-based interface 

combined with ML and self-adaptive 

algorithm [15]. 

Only 11 hand gestures were considered 

with accuracy of 93.6% 
Limited Datasets 
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Time Sequential Inflated 3 Dimensions (TS-

I3D) CNN approach for HGR based on 

Frequency Modulated Continuous Wave 

(FMCW) radar sensors [16]. 

Their experimental results showed  

average recognition accuracy rate of 

96.17%. 

Limited Datasets and work focused only on 

gesture feature extraction and the impact of noise 

on hand gesture parametric images. 

static hand gesture recognition based on a set 

of image descriptors: Gradient Local 

Autocorrelation (GLAC), Gabor Wavelet 

Transform (GWT), and Fast Discrete Curve 

Transform (FDCT) [17]. 

with 100% accuracy for user-independent 

gestures and 98.33% accuracy for user-

dependent gestures 

 Limited datasets (the study investigated gesture 

recognition by a single user and different users, 

utilizing three datasets for user-independent 

recognition and one for user-dependent 

recognition). 

Thermal image-based hand gesture 

recognition [18]. 

Experimental results indicated that 

thermal images were robust to different 

lighting conditions, and the proposed 

model achieved a high classification 

accuracy of 97.54 % with 1.8 M 

parameters. 

The model focuses mainly on computational 

efficiency than accuracy of gesture recognition. 

Recurrent neural networks (RNNs) to model 

the long-term contextual information 

inherent in temporal sequences of hand 

gesture feature vectors [19]. 

Gesture recognition accuracy of 96% 

Involved large number gestures defined by The 

American Sign language and semaphoric hand 

gestures gotten from Shape Retrieval Contest 

datasets. 

Gesture recognition method and device 

exploiting light sensing characteristics, using 

FPGA control and deep learning analysis, 

employing S-Bi-LSTM and D-Bi-LSTM 

[20]. 

Remarkable accuracy of 91.67% for 

dynamic gestures 
Limited Datasets 

CNN and OpenCV 

Significant improvement on original 

training datasets resulting in 5000 images 

with 500 images per gesture. And 

Improved recognition accuracy of 99.2% 

despite large datasets.  

Large and Augmented Datasets 

 

In summary, these reviewed studies have contributed 

to the advancement of hand gesture recognition by 

proposing innovative techniques and achieving high 

recognition accuracy across various challenges, such as 

trade-offs in smart gloves, and noise impact in camera-

based approaches. However, their reliance on small 

datasets limits their ability to represent the complexity of 

hand gestures encountered in real-world settings. To 

overcome this limitation, this study aims to gather and 

pre-process a diverse collection of hand gesture images to 

enhance the overall performance and generalize to new 

scenarios. Furthermore, the study will utilize image 

augmentation techniques to improve its own model 

robustness in challenging environments and leverage 

Python and OpenCV for efficient and accurate 

recognition of hand gestures. 

III. PROPOSED SYSTEM DESIGN 

Deploying a high-granularity recognition (HGR) 

system in a robotic arm with six degrees of freedom 

entails the utilization of vision sensors, or cameras, to 

capture the gestures of the operator‘s hand. The image 

data is subsequently processed by OpenCV to govern the 

movements of the robotic arm. The processed images are 

subjected to a CNN classifier model, which identifies and 

classifies the gestures, subsequently converting them into 

commands. This novel approach provides operators with 

the ability to manipulate the robotic arm using hand 

gestures instead of a conventional controller. Fig. 1 

represents a block diagram of the proposed system design. 

A detailed description of the system block diagram is 

highlighted as follows. 

 
Fig. 1. Block diagram of the hand gesture-controlled industrial robot. 

Power Supply: This unit provides the power that is 

needed to run the entire system. The Jetson nano 

controller will be powered by a 5V, 4A power adapter. 

The adapter is characterized by short circuit protection 

and overload protection. 

Controller: The HGR system controller is 

implemented with an Nvidia Jetson Nano microcomputer 

[22], specifically created for AI and robotic purposes, 

presenting a high-performance GPU and quad-core ARM 

Cortex-A57 CPU to execute intricate algorithms and 

machine learning models. It undertakes critical tasks such 

as image processing, object recognition, and gesture 

recognition, offering the necessary framework to operate 

a robotic arm‘s control algorithms and hand gesture 

recognition software. 

Serial Bus Servo: Serial bus servos are motorized 

actuators that possess the ability to be regulated via a 

serial communication protocol. Due to their precise 

positioning and control capabilities, they are fitting for 

the suggested design. The six degrees of freedom (DOF) 

robotic arm necessitates these various servos to moderate 

its joints. The utilization of serial bus servos simplifies 

the process of wiring and controlling multiple servos as 

Power 

supply 

Jetson Nano 

(controller) 

User 

Interface 

6 DOF 

Robotic 

Arm 

Desired 

Action 

Serial Bus 

Servo 

Robot Vision 

(camera sensor) 
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they can be connected in a chain and individually or 

collectively governed. 

Robot Vision: Robot vision, typically implemented 

using cameras, enables the robot to perceive its 

surroundings, recognize objects, and track hand gestures. 

It captures visual information that can be processed by 

the AI algorithms running on the Jetson Nano. 

DOF Robotic Arm: A robotic manipulator possessing 

six degrees of freedom has the capacity to move and 

rotate in various directions. It comprises six joints that 

utilize a servo motor to facilitate motion. The manipulator 

is equipped with an end effector, such as a laser, cutter, or 

gripper that is attached to the end to permit efficient 

interaction with the surrounding workspace. The choice 

of a suitable end effector is contingent upon the specific 

requirements of the task, guaranteeing optimal 

functionality and performance. 

Mobile App Interface: A mobile app remote control is 

simply an application that can be used to control the 

robotic arm from a mobile device. It allows users to send 

commands, control the arm‘s movements, and potentially 

even perform hand gesture recognition through their 

mobile phones. 

IV. METHODOLOGY 

Developing a system for HGR involves two key 

aspects, namely model development, and deployment. 

The former necessitates a series of stages such as data 

preparation, image processing, defining the model 

architecture, assessing its performance, and conducting 

tests. The latter phase encompasses the implementation of 

the model through OpenCV, initializing the camera, 

extracting hand features, classifying the gestures, and 

utilizing the recognized gestures to manage external 

devices via Jetson Nano. 

A. Dataset Preparation 

The dataset of the hand gestures comprises American 

Sign Language (ASL) hand gestures as shown in Fig. 2 

[23], comprising 700 images from 5 individuals. These 

images, feature variations in lighting conditions and hand 

postures, which were achieved through the application of 

image processing techniques. The hand images possess a 

single channel and have dimensions of 400 by 400 pixels, 

with the hands located centrally. To expedite 

computations and enhance the speed of hand gesture 

recognition by the system, the images have been scaled 

down to (64, 64, 1).  

The American Sign Language (ASL) employs a set of 

hand gestures that can be classified as 10 digits, ranging 

from 0 to 9. Each of these classes comprises 700 images, 

and the dataset is partitioned into two subsets - one for 

training (80% of the data) and the other for testing (20% 

of the data). Furthermore, the number of images per class 

is equally distributed across both subsets. 

 
Fig. 2. ASL hand gestures. 

B. Data Augmentation 

In order to expand the available training data and 

improve the model‘s ability to adapt to various lighting 

conditions and busy backgrounds, several image 

augmentation techniques were applied to the dataset. 

These techniques encompassed horizontal shifts, rotations, 

flips, brightness adjustments, and more [24]. As a result, 

the dataset size significantly increased from 700 original 

images to 5,000 augmented images, with an equal 

distribution of 500 images per set of 10 distinct hand 

gestures.  

   
Fig. 3. Image flipped horizontally. 

C. Model Classification  

A model for gesture recognition tasks, known as Deep 

Convolutional Neural Network (DCNN), was developed. 
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The model architecture as depicted in Fig. 4 comprises 

multiple layers of convolutional, pooling, dropout, and 

fully connected layers to facilitate classification.  

The architecture is specifically designed to recognize 

hand gestures from input images.  The network applies 

various layers, designed to sequentially extract features 

and ultimately yield a probability distribution over ten 

hand gesture classes. 

Initial layers of the CNN implement convolutional 

filters to extract spatial features from the input image, 

converting these into a feature map. Subsequent layers 

include max-pooling layers, which decrease the feature 

map‘s dimensions and dropout layers, which avert 

overfitting by randomly omitting units during the training 

process [25]. 

The incorporation of non-linearity into the system, 

crucial for recognizing complex patterns, is achieved 

through the rectified linear unit (ReLU) activation 

function applied after each convolutional layer [26] 

Mathematically, the ReLU function is given as: 

 ( )     (   )   {
         
           

               (1) 

In the final layer of the CNN, SoftMax activation was 

applied, which transforms the output logits into 

probabilities. This corresponds to the likelihood of the 

input image belonging to each of the ten potential hand 

gesture classes. Importantly, SoftMax activation ensures 

that the predicted probabilities sum to one, allowing the 

model to make confident class predictions based on the 

input image features. The SoftMax function could be 

expressed as: 

 (  )  
   

∑  
   

   

                     (2) 

Where zk is the kth element of the input vector and k is 

the number of classes in this case k=10. The denominator 

(canonical partition function) is a normalizing constant to 

make sure the probabilities add up to unity. 

The model adjusts its parameters using root mean 

square propagation (RMSProp), which guides the 

model‘s parameters along the steepest descent. The 

categorical cross-entropy loss function is implemented to 

minimize the disparity between the predicted probability 

distribution (p = [p1, p2, …, p10]) over the ten hand 

gestures and the true class labels (y = [y1, y2, …, y10]). 

For a single training example, the categorical cross 

entropy loss can be calculated as: 

   ∑        (  )
  
                            (3) 

 

Fig. 4. Model architecture. 

In post-training, the model‘s performance is evaluated 

using a testing dataset, reporting the accuracy metric and 

plotting a confusion matrix for the visual representation 

of the classification results. 

The architecture of the CNN model for image 

classification, illustrated in Fig. 4, is characterized as 

follows: input images of size 400 × 400 pixels are 

accepted and subjected to initial rescaling to 64 × 64 

pixels. The data is then processed through two Conv2D 

layers, each with 32 filters and a kernel size of (3, 3), 

followed by a max-pooling layer and a dropout layer to 

prevent overfitting while preserving the input shape. 

Additional Conv2D layers with 64 filters and a max-

pooling layer are employed to further process the data. 

The resulting features are flattened from a 4D tensor to a 

2D tensor and fed into two fully connected dense layers. 

The first dense layer comprises 64 neurons and is 

connected to the flattened output, while the second layer 

comprises ten neurons, indicative of the number of 

classes in the task. 

The model, in its entirety, encompasses a total of 

987,882 trainable parameters, which comprise the 

convolutional and dense layers‘ weights and biases. 

These parameters are acquired through training and are 

utilized to enhance the model‘s efficacy in accomplishing 

the classification task at hand. 

D. Model Development  

The model that has been trained is put into action on an 

HGR system in real-time through the utilization of 

OpenCV. This HGR system captures video frames using 

a camera and implements the same pre-processing 
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measures as were utilized during training. The model then 

proceeds to make predictions regarding hand gestures in 

actual time. 

E. System Overview  

The Python-based hand gesture recognition system that 

leverages OpenCV and a pre-trained CNN model to 

detect and classify hand gestures in real time was 

implemented. Specifically, the system imports necessary 

libraries, initializes the camera, and creates a gesture 

recognizer object with the model path and other options. 

Additionally, the system captures a frame, converts it to 

RGB format, locates the region of interest (ROI) where 

the hand is located, and extracts its features, including 

landmarks, contours, hulls, and so forth. Subsequently, 

the system feeds these features to the CNN model to 

obtain the gesture class and confidence score. Based on 

the gesture class, the system controls a robot and displays 

the corresponding result on the screen. Lastly, the system 

iterates through the aforementioned steps until the user 

terminates the program or presses a key. The steps are 

illustrated in the developed HGR algorithm. 

F. The HGR Algorithm 

1. Import the required libraries 

2. Load the trained CNN model 

3. Initialize the Jetson Nano camera or webcam 

4. Set the image dimensions for the model input 

5. Define the labels for hand gesture classes 

6. Initialize the 6 DOF arm control interface 

7. While True: 

1) Capture frame from the camera 
2) Preprocess the frame for hand gesture 

recognition 
3) Perform hand gesture recognition classification 

using the CNN model 
4) Get the predicted gesture label 
5) Translate the recognized gesture into a 

command for the 6 DOF arm 
6) Send the command to the 6 DOF arm control 

interface 
7) Display the frame and recognized gesture label 
8) Check for the ‗q‘ key press to exit the loop 

8. Release the camera and close the OpenCV 
windows 

V. RESULTS AND DISCUSSION 

The use of hand gesture recognition for robotic control 

in hazardous environments by leveraging the power of 

Python and OpenCV was explored in the study. Through 

a series of experiments and evaluations, valuable insights 

were obtained into the effectiveness of the approach. The 

confusion matrix, precision, recall, and F1 score of the 

system provided valuable insights into the classification 

performance of the model. A confusion matrix is a 

tabular representation that provides an overview of the 

performance of a machine-learning model with respect to 

a given test dataset. It summarizes the number of accurate 

and inaccurate predictions made by a classifier. On the 

other hand, a confusion matrix heatmap is a graphical 

depiction of the confusion matrix. It is a two-dimensional 

matrix that is colour-coded and displays the number of 

true positives, false positives, true negatives, and false 

negatives for each class in the classification model. Fig. 5 

illustrates the confusion matrix heat map of the test 

dataset. 

The presented visual of the confusion matrix in Fig. 5 

depicts a visual portrayal of the confusion matrix, which 

presents the efficacy of a hand gesture recognition system 

that utilizes ten (10) distinct features to classify gestures 

ranging from 0 to 9. Each row in the matrix corresponds 

to the actual classes, while each column represents the 

predicted classes. The figures within the matrix denote 

the frequency or count of predictions made by the system. 

To expound further, the first row of the matrix illustrates 

that the system accurately predicted Class 0 for one 

instance. However, it made errors by predicting Class 1 

for two instances, Class 2 for one instance, and so forth. 

Similarly, the second row of the matrix shows that the 

system failed to predict Class 1 accurately for any 

instance. Instead, it misclassified by predicting Class 0 

for two instances, Class 2 for one instance, Class 3 for 

one instance, Class 4 for three instances, and so on. The 

diagonal elements of the confusion matrix, which run 

from the top-left to the bottom-right, signify the correct 

predictions, whereas the off-diagonal elements indicate 

misclassifications or errors made by the system. An 

analysis of the confusion matrix provides valuable 

insights into the performance of the classification model. 

It was done in order to identify the model‘s strengths and 

weaknesses, which can help to make informed 

improvements or adjustments to enhance its predictive 

capabilities. 

 
Fig. 5. Confusion matrix heat map of the test dataset. 

A. Evaluation Metrics 

Accuracy, precision, recall, and F1 score are 

performance evaluation metrics that are commonly 

employed to assess the efficacy of a model. Accuracy 

gauges the ratio of accurately predicted observations to 

the overall number of observations. Precision measures 

the degree to which a model accurately predicts positive 

observations. Recall, on the other hand, assesses the 

ability of the model to correctly predict all feasible 

positive observations. The F1 score is a composite metric 

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 12, No. 6, November 2023

438



that computes the weighted average of precision and 

recall. 

         
     

           
                              (4) 

          
  

     
                                        (5)  

       
  

     
                                              (6) 

           
                 

                
                          (7) 

The variables Tp, Tn, Fp, and Fn represent true positives, 

true negatives, false positives, and false negatives, 

respectively. The machine learning algorithm was trained 

using a specific set of training data and evaluated using 

these metrics on test data. In an effort to increase the 

amount of training data, the original training dataset was 

expanded to include a total of 5,000 images, with 500 

images corresponding to each gesture. Following training 

using the augmented dataset and evaluation using the 

same test data, the model exhibited a significant 

improvement in performance. Table II shows the 

evaluation summary. 

TABLE II: EVALUATION SUMMARY 

Evaluation Metrics of 
Classifier 

Trained with 
original set 

Trained with 
augmented set 

Accuracy 96.9% 99.02% 

Precision 90.6% 91.45% 

Recall 90.6% 91.45% 

Moreover, the analysis presented a method of 

optimization aimed at reducing training losses through 

the modification of neural network attributes such as 

weights and learning rate. An epoch which signifies a 

complete traversal through the entire training dataset 

within the model training process was carried out. In 

essence, the training process is compartmentalized into a 

specific number of epochs, wherein the model scrutinizes 

all the training instances once and updates its parameters, 

namely weights and biases, on the basis of the errors it 

incurs while predicting the targets. The count of epochs 

employed during training constitutes a hyperparameter 

that necessitates tuning in order to realize optimal 

performance. The deployment of insufficient epochs may 

lead to underfitting, wherein the model is unable to 

apprehend the patterns present in the data, whereas an 

excessive epoch count may culminate in overfitting, 

where the model becomes too intricate and assimilates 

noise from the data. Usually, the epoch count is 

established by striking a balance between the training 

time and the performance on a validation dataset. 

Monitoring the validation loss throughout the training 

process is a customary practice to determine the 

appropriate point to conclude the training. If the 

validation loss stops decreasing, it may suggest that the 

model has achieved its optimal performance, and further 

training may lead to overfitting. Fig. 6 and Fig. 7 depict 

the validity accuracy in relation to consistency and loss of 

validity as contrasted to loss of training. It demonstrates 

the accuracy and loss epoch for the model. 
 
 

 

Fig 6. Accuracy vs number of epochs. 

 

Fig. 7. Loss vs number of epochs. 

VI. CONCLUSION 

The use of hand gesture recognition for robotic control 

in hazardous environments by leveraging the power of 

Python and OpenCV was explored in the study. The 

study demonstrated that it is possible to design a natural 

and intuitive interface for humans to interact with robotic 

systems using these open-source tools. From the results, 

it can be seen that hand gesture recognition can be 

performed with high accuracy and reliability using 

Convolutional Neural Network (CNN) models, especially 

when they are trained with a varied and representative 

dataset. From the evaluation summary in Table II, there 

was a significant increase in accuracy and precision from 

96.9% to 99.2% and from 90.6% to approximately 92% 

respectively.  

Additionally, a potential avenue for progress in this 

research would involve incorporating hand gesture 

recognition with other forms of control, such as voice and 

eye-tracking. Specifically, this would entail utilizing hand 

gestures to identify and direct attention to objects, issuing 

commands through voice, and monitoring robot actions 

through eye-tracking. The implementation of this 

multimodal interface has the potential to optimize the 

efficiency and efficacy of human-robot interaction, while 

also bolstering user satisfaction and trust in the robotic 

system. 
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