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Abstract—Unmanned aerial vehicles (UAVs) are 

increasingly used in various applications, including 

infrastructure inspection, traffic monitoring, remote sensing, 

mapping, and rescue. However, many applications have 

required UAVs to function autonomously, without human 

intervention to improve system performance. In this study, 

we propose a new approach to environmental monitoring 

using a group of UAVs equipped with sensors under the 

support of reinforcement learning. Regarding the 

communication system model, we assume that UAVs can 

cooperate with each other to learn and share information 

about the environment, and then relocate to an optimal 

position while managing connectivity and coverage. After 

that, we exploit reinforcement learning with a deep 

deterministic policy gradient (DDPG) algorithm to optimize 

environmental monitoring with the proposed algorithm. 

Specifically, the proposed algorithm aims to simulate an 

environmental monitoring system using UAVs with basic 

parameters. We further apply the proposed algorithm to 

evaluate network performance under different parameter 

settings. Numerical results validate the effectiveness of the 

proposed learning-based framework in monitoring and 

sensing data.  

Index Terms—Connectivity maintenance, coverage 

maximization, deep reinforcement learning, Unmanned 

aerial vehicles (UAVs) 

I. INTRODUCTION 

Unmanned aerial vehicles (UAVs) are mobile 

machines that are utilized in a wide range of networked 

fields, including traffic monitoring, electrical system 

testing, and package delivery [1−3]. While UAV usage is 

not limited to industry and academia, it demonstrates the 

potential to provide a visual line of sight (VLoS), subject 

to certain constraints imposed by applicable regulations 

(e.g., flight zone or specific location) [4]. Although 

UAVs are primarily used in VLoS scenarios, there are 

many applications that may be characterized by Beyond-

VLoS (BVLoS) environments as examining a large area 
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[5−7]. Therefore, consensus among stakeholders is 

necessary to expand the commercial range of UAVs, 

especially in areas with limited visibility, such as urban 

areas (central cities with high buildings and large 

obstacles), residential areas in borders, high mountains, 

and islands. As cutting-edge technology trends continue 

to emerge, UAVs are being integrated into wireless 

mobile networks, fifth-generation (5G) systems, and 

beyond, making UAV management an essential aspect of 

mobile communication development [8]. New network 

models, such as edge computing, cloud computing, and 

cellular networks, can help UAVs handle high-speed 

flight control applications, while hardware vendors allow 

the integration of different microprocessor architectures 

into UAVs [9]. This enables UAVs to handle real-time 

applications and optimize radio resources for orbital 

control. 

UAVs play a crucial role in deploying radio networks 

for real-world applications that meet diverse 

communication system requirements. Among these 

requirements, coverage and connectivity are considered 

the most critical factors [10]. Coverage refers to the 

ability to reliably monitor areas or targets of interest 

using sensors, while connectivity involves transmitting 

sensor data from sensors to a central processing station 

[11]. In many applications, it is essential to ensure both 

coverage and connectivity because radio networks are 

responsible for continuously monitoring and analyzing 

targets or areas [12, 13]. Moreover, mobile networks are 

dynamic, and a non-coverage area can cause network 

links to change, leading to collisions during network 

planning and packet transmission. Traditional algorithms 

to solve this problem often have high computational 

complexity and may not be practical for fast-fading 

channels [14]. Therefore, there is a need for low-cost 

algorithm designs for resource allocation in UAV-aided 

networks.  

Reinforcement learning provides a mathematical 

framework for developing strategies or methods that map 

states to actions, with the goal of maximizing the 

cumulative reward function [15]. It has been widely 

applied in various fields, such as manufacturing and 

automation, financial policy optimization, and robotic 
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control systems. With the development of deep learning 

techniques, reinforcement learning has evolved into Deep 

Reinforcement Learning (DRL), which uses deep 

machine learning neural networks (DNNs) in the policy 

formation process [16, 17]. The offline-learning structure 

and DNN network can predict and update online when 

combined with DRL, making DRL capable of handling 

complex problems with multidimensional data sets in the 

action space (even allowing the action space to be a 

continuous domain) [18]. These new features have made 

significant contributions to recent breakthroughs in smart 

telecommunications, where DRL has been applied to 

enable radio resource planning for real-time applications. 

Many research papers have proposed applying deep 

reinforcement learning techniques to environmental 

monitoring. Reference [19] focused on the challenge of 

drone navigation in an environment with numerous 

obstacles, utilizing sensor data. The authors adopt the 

Proximal Policy Optimization (PPO) deep reinforcement 

learning algorithm for a single drone to reach the goal 

location. In [20], the authors presented a cooperative 

multi-UAV data collection system that works in concert 

to minimize the overall energy consumption of both 

UAVs and sensors. They proposed a deep deterministic 

policy gradient (DDPG)-based approach for power 

control and obstacle-aware navigation. Additionally, they 

provide a multi-UAV scheduling framework to create an 

activity plan for each UAV. Similarly, in [21], the aim 

was to maximize the total throughput of UAV-to-vehicle 

communications. In [22], the authors proposed a MARL 

algorithm that can be applied to a team of UAVs, 

enabling them to cooperatively learn to provide full 

coverage of an unknown field of interest while 

minimizing overlapping sections among their fields of 

view. In [23], the authors applied the DRL technique to 

the classification of detected anomalies for intelligent 

video surveillance applications; in particular, they used 

the Deep Q Learning method with deep CNN. Their 

validation showed promising results when applying DRL. 

While the research papers mentioned above offer deep 

reinforcement learning techniques for either a single 

UAV or multiple UAVs, they do not pay attention to the 

connectivity between UAVs. 

In this paper, we investigate a novel deployment model 

where UAVs are utilized to sense data. In summary, our 

main contributions are listed as follows: 

 We consider an area where the coverage is defined 
by a set of UAVs. In particular, the UAVs from a 
hub will fly and distribute in the network to sense 
and gather information. Collaboration between 
UAVs is allowed to enhance connectivity under 
practical conditions including sensing range and 
limited energy of each UAV. 

 We formulate an optimization problem that 
maximizes the sensing range and maintains the 
connectivity of the network. We propose to exploit 
DDPG to solve this problem in polynomial time. 

 Numerical results demonstrate the benefits of our 
proposed method in improving the sensing range and 
connectivity performance. In particular, the reward 
function is significantly improved during epochs.  

II. NETWORK MODEL AND MARKOV DECISION PROCESS 

A. System Model 

We consider an environmental monitoring system as 

shown in Fig. 1. Specifically, the system consists of N 

UAVs that monitor an area of interest. Each UAV is 

equipped with a sensing function and a communication 

function. Equipped with sensing functions, the UAVs can 

collect data about the phenomenon of interest, such as 

gas/radiation leakage, radioactivity substance, and toxic 

pollutants. In addition, with a proper communication 

protocol, each UAV can exchange its collected data with 

the other UAVs in the system. The UAVs gather desired 

data based on the sensing functions for different purposes. 

The dynamic network can qualify and allocate radio 

resources from the collected sensing data and 

measurement metrics.   

 
Fig. 1. The considered environment monitoring system model using 

multiple UAVs. 

In general, various measurement metrics are combined 

with different ways to collect sensing data adapting to the 

UAV positions. In this paper, we adopt a widely-used 

method applied for geological and environmental sciences 

[24] to model the distribution of sensing data in the 

coverage area with the presence of UAVs. We denote 

( ) p the sensing sample defined by the UAV at 

position p . Here, the position p is determined by a 

corresponding tuple in the Cartesian coordinate system, 

i.e., ( , , ).x y zp  Mathematically, ( ) p  can be modeled 

as follows: 

 ( ) ( ),T p β F p  (1) 

where 1 2[ , , , ]T

m  β  are the constants and 

1 2( ) [ ( ), ( ), , ( )]T

mf f fF p p p p  are spatial basis 

functions with T being the transpose operator. The 
subscript m denotes the number of basis functions. The 

thk element of ( )F p is denoted by ( ),  kf kp , represents 

a Gaussian radial basis function that can be 
mathematically expressed as: 

 

2
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( ) exp ,
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k
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k
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where kq and 2

k  are the center position and variance of 

the basis function ( ),kf p respectively. In Eq. (2), the 

operator || || represents the Euclidean norm. 

It is assumed that within the system under 

consideration, there is a special UAV, called the sink 

node, equipped with higher computing and energy 

capabilities than the remaining UAVs. The sink node 

periodically determines optimal movement directions and 

speeds for all the UAVs based on gathered information 

about desired positions in the network. It can also 

forward the collected sensing data of all UAVs to a 

central station for other analysis and decision-making 

activities. The sink node, operating as a central controller, 

aims to control the movement directions and speeds of all 

UAVs in the system, maximizing sensing coverage based 

on the collected data. Additionally, the network can 

minimize energy consumption while maintaining 

connectivity among the UAVs. 

B. Markov Decision Process (MDP) Formulation 

As previously mentioned, the sink node periodically 

determines the optimal movement directions and speeds 

for all the UAVs. To account for the variation in 

propagation channels over time and frequency, we can 

divide the time domain into intervals with a fixed 

duration of  seconds, referred to as the control period, 

during which the channels are static. The starting time 

instant of a control period is referred to as a time step, and 

the control action is performed at each time step. 

1) State Space 

Let ip  and i  denote the position and sensing sample 

of the thi UAV at the current time step. Again, the 

position ip  has the corresponding coordinate of ( , , )i ix y z . 

For the sake of simplicity, this paper assumes that all the 
UAVs fly at the same altitude. Then, the state space of the 

system, denoted by , is defined as: 

 1 1{( , ), , ( , )},N N  p p  (3) 
 

which comprises the positions and sensing samples of all 

the N UAVs. 

2) Action Space 

Let denote the action space of the system. For 

given a certain state s , a control action a  is 

performed to determine the movement speed and 

direction of the N UAVs in the next control period. Thus, 

 can be defined as: 

 1 1{( , ), , ( , )},N Nv v    (4) 

where [0, 2 ],  1, 2, ,i i N     is the movement 

direction of the UAV, and 0iv   presents the speed of the 

thi UAV. We emphasize that if 0iv   the thi UAV does 

not move in the next period. Alternatively speaking, this 

UAV hovers at the current location. Otherwise, the 

UAV i moves to the next position with the speed of .iv  

3) Reward Function 

In this paper, to improve the coverage area and energy 

efficiency of the system, the objectives of the monitoring 

system comprise of: 

 Maximizing the information in the sensing data, 
which is obtained by the UAVs. 

 Maximizing the sensing coverage and minimizing 
the energy consumption of the UAVs. 

 Maintaining connectivity among the UAVs. 

Based on the above objectives, the reward function is 

designed as explained as follows: 

Energy consumption: When the control action a is 

performed at the current time step with the system state 

of s, let ( , )ie s a  denote the total movement energy usage 

of the UAV i  during the control period . In this work, 

we assume that each UAV consumes 0e  Joules to travel 

1~[m] [25]. As such, one can define the energy 

consumption of the UAV ith as follows: 

 0 ,( , )i ie s a e v  (5) 

and the energy consumption of the system is: 

 
1

( , ),
N

i

i

e s a


   (6) 

which is measured over all the N UAVs in the system. 

Sensing data and sensing coverage: It is assumed that 

all the UAVs are equipped with sensors with the same 

sampling frequency, which is denoted by f. Then, the 

number of sensing samples that the UAV i collects during 

the period  is M=f. We denote: 

 ,

1

( , ) ,
M

i i k

k

s a 


  (7) 

as the sum of UAV i‟s sensing samples during period  

where ,i k  is determined according to Eq. (1). To 

maximize the total interest value, the UAVs should move 

to positions with high-interest values. The total interest 

value achieved by the system is 
1

( , )
N

ii
s a

 . 

To maximize the sensing coverage of the system, the 

overlap of sensing coverage among the UAVs should be 

minimized. For this, we denoted rc and rs as the 

communication and sensing radius of all UAVs, 

respectively. We define Yint(s, a) as a metric for 

qualifying the degree of coverage and the interest value 

achieved the system given a pair of (s, a). Then, Yint is 

defined as follows: 

 int , th

1 1 1

( , ) max( ,0),
N N N

i i j

i i j

Y s a d d
  

     (8) 

where di,j is the distance between two UAVs i and j, dth is 

the distance threshold between two adjacent UAVs. The 

existing works [26, 27] showed that the hexagonal pattern 

can maximize sensing coverage while avoiding coverage 

holes. To achieve goals, we set the distance threshold dth 

to the distance between two adjacent nodes in a 

hexagonal pattern, i.e. th 3 sd r . From Eq. (2), if the 

UAVs are located at the highest interest positions and the 

distance between any pair of UAVs is higher than dth, 

then Yint is maximized. 

Connectivity maintenance: We denote ci as a 

connectivity coefficient that becomes 1 if the UAV 
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thi has a path to the sink node and becomes 0 otherwise. 

Note that the path can be a single-hop path or a multi-hop 

path. Given UAVs‟s positions ip , i =1, 2, , N the 

Dijkstras shortest path algorithm [28] can be used to find 

a path from thi  UAV to the sink node. Let 
1

N

c ii
c


  

denote the metric for qualifying the network connectivity 

when the action a is performed at the state s . We define 

an immediate reward function as follows: 

 1 int 2 3( , ) ,cr s a       

where 1 , 2  and 3  are the weights associated with intY , 

c  and  , respectively. As such, the reward ( , )r s a  is 

determined based on the weighted sum of the interest 

value, movement energy usage, degree of coverage 

maximization, and network connectivity maintenance. 

Algorithm 1: DDPG Algorithms 

1. Initialize random critic network ( , | )QQ s a   and 

actor-network with weights 
Q and 

 . 

2. Initialize target network Q  and   with weights 

Q Q 

 , 

  

  

3. Initialize buffer R 

4. for episode = 1, M do  

5. Initialize a random process Nt for action exploration. 

6. Receive initial observation state s1 

7. for t=1, T do 

8. Select action ( | )t t ta s N    according to the 

current policy and exploration noise. 

9. Execute action at observe reward rt and new state 

1ts   

10. Store transition 1( , , , )t t t ts a r s   in R 

11. Sample a random mini-batch of N transitions 

1( , , , )t t t ts a r s   from R 

12. Set 1 1( , ( | ) | Q

i i i iy r Q s s    
 

 
    

13. Update critic by minimizing the loss: 

21
( ( , | ))Q

i i i

i

L y Q s a
N

   

14. Update actor policy using sampled policy gradient: 

( ),

1
( , | ) | ( | ) |

i s ii

Q

a s s a s

i

J Q s a s
N

 


 

        

15. Update target network: 

(1 )Q Q Q   
 
   , (1 )     

 
    

16. end for 

17. end for 

Movement control problem: The controller is 

implemented in the sink node. At every time step, the 

system controller observes the system state s . Then, it 

decides an action a  that determines the movement speed 

iv  and direction i  for every i  in the next control period 

of seconds. At the end of the next control period, the 

system controller can calculate the immediate reward 

( , )r s a as a feedback signal. The main design objective is 

to find a movement control policy that decides a  based 

on s to maximize of the expected reward over a long run, 

i.e., E[ ].r  Generally, designing a closed-form movement 

control policy to maximize E[ ]r is challenging because 

the area of interest is unknown and thus the state 

evolution of the system is complex. In this study, we 

apply a model-free DRL to deal with the above 

challenges. Through the interactions between the DRL 

agent and the environment, the agent learns the optimal 

control policy from the historical data, including system 

states, control actions, and the resulting immediate 

rewards. 

III. DDPG ALGORITHM FOR ENVIRONMENT MONITORING 

A. Algorithm Introduction  

In this section, we utilize the DDPG algorithm to 

allocate an action strategy to the UAVs. Firstly, we 

provide a brief introduction to DDPG, followed by 

defining the DDPG states, actions, and rewards for the 

agent. It is worth noting that DDPG is an extension of the 

deep Q network (DQN) algorithm introduced by Mnih et 

al. [29], which was the first approach to combine deep 

learning and reinforcement learning but was limited to 

low-dimensional action space sets. DDPG, on the other 

hand, is a deep reinforcement learning algorithm capable 

of dealing with multidimensional action spaces, seeking 

to find the optimal action strategy for agents that 

maximizes the reward for completing a given task [30]. 

Unlike classical deep learning methods such as Q-

learning, the DDPG algorithm can solve continuous 

spatial sets, which is a major obstacle. 

DDPG is based on the actor-critic (Policy-Evaluation) 

algorithm. It‟s basically a method that combines gradient 

policy and function values. The policy function   is 

called the Actor, while the value function Q is called the 

Critic. The agent output is essentially an action selected 

from a continuous action space, with the current state of 

the environment ( | )a s   . For the Critic network, its 

output ( , | )Q s a   is a signal of the error form: Time 

difference (TD) to evaluate the actions of the agent 

knowing the current state of the environment. A 

schematic diagram of the agent evaluation architecture is 

shown in Fig. 2. 

 
Fig. 2. Actor-Critic network structure. 

There are also some practical tricks used to enhance 

performance. The trade-off between discovery and 
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mining is done using the  algorithm, where a random 

action ta  is chosen with probability  , a correct action 

( | )t ta s    is selected for the current policy with 

probability 1  . Furthermore, an experiential playback 

buffer b , of size B , is used during the training phase to 

break the temporal correlations. 

Each interaction with the environment is stored as 

tuples of the form (st, at, rt, st+1), which are the current 

state, the action to take, and the reward for performing 

action a in state st and the next state, respectively 

(Algorithm 1 (Line 9)). 

During the learning phase, a set of data is randomly 

extracted from the buffer and used (Algorithm 1, line 10). 

Additionally, target networks are exploited to prevent 

algorithmic divergence caused by direct updates of the 

network weights with gradients obtained from the TD 

error signal. The DDPG algorithm is applied to the 

system model with the agent, which consists of 20 UAVs 

with one original UAV performing the task of 

determining the movement direction and speed of other 

UAVs. The action set, state set, and reward function are 

defined in the sub-section „system model‟. 

 
Fig. 3. DDPG algorithm framework. 

B. Framework 

The framework of the proposed method is illustrated 

by Fig. 3, which includes a critic network with 

parameters 
Q  and an actor network with parameters 

 , 

an actor target network with parameters 
Q


, a critic 

target network with parameters 


. The algorithm uses 

the neural network to approximate an action under the 

obtained policy and to approximate the Q value of a state-

action pair according to the policy.  

In particular, the actor network takes state s as input 

and output an action a, and the critic network takes state s 

and action a as input and output the Q value under the 

policy. 

An experience replay D is created to allow the DRL 

agent of the DDPG-based algorithm to learn from its 

interactions with the environment. At each time step t, the 

agent excutes an action at under the state st, then it gets 

the reward tt and the next state st+1. Therefore, the 

transition tuple (st, at, rt, st+1) is obtained and stored in the 

experience replay buffer D. 

The DRL agent goes through two stages of learning, 

called the policy evaluate stage and the policy update 

stage. These two stages combine with each other to find 

the optimal policy, which can return the optimal action 

according to the current state. To describe this process, 

we consider the kth transition tuple 1( , , , )k k k ks a r s   is 

sampled from buffer D. In the policy evaluate stage, the 

critic network takes the state sk and the action ak as input, 

the output is the Q value denote ( , )k kq s a to evaluate the 

policy. The target actor network takes the state to ouput 

the action 1ka  . The target critic network takes the state 

1ks   and 1ka   to get the Q value 1 1( , )k kq s a  . The loss 

function is calculated (Algorithm 1 line 12, 13), then 

using gradient descent method, we can minimize the loss 

function. The weight parameters of the critical network 

are updated to achieve a better Q value. 

In the policy update stage, we fixed the value of Q 

obtained from the critic network and performed gradient 

ascent method to update the weight parameters of the 

actor network which is also the policy network. Thus, we 

get the policy to return the optimal action.  

The parameters of target actor network and target critic 

network are updated using soft update method [30]. 

C. Model Training 

The contruction of the critic network and the actor 

network is illustrated in Fig. 4. The critic network and the 

target critic network have the same structure which 

includes one input layer, one output layer and two hidden 

layers. The input dimension of the critic actor is the 

combination of the state space and the action space, 

whereas the output is one dimension. The input 

dimension of the actor-network is the state space, and the 

output dimension is the action space. The target actor 

network has the same structure as the actor-network. 

 
Fig. 4. Critic network and actor-network 

The activation function applied in the layers of the 

critic and actor-network is the rectified linear unit 

(ReLU). The optimizer used here is the Adam optimizer. 
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The training process of critic network: A random mini-

batch of N transitions are sampled from the experience 

replay buffer D. Denote the target Q value of the ith 

transition tuple 1( , , , )i i i is a r s   as yi written as: 

 1 1( , ( | ) | ,Q

i i i iy r Q s s    
 

 
    (10) 

where ‘ is the policy that outputs the action ai+1 under 

the state si+1 through the target actor-network 


. 

Q

 is 

target critic network which outputs the Q value according 

to the action ai+1, state si+1 pair. Besides (0, 1] is the 

discount factor.  

Minimizing the loss function between the yi value and 

the output Q value from the critic network written as: 

 21
( ( , | )) ,Q

i i i

i

L y Q s a
N

   (11) 

We can update the weight parameters of the critic 

network via gradient descent: 

   ,
qq q w qw w L w    (12) 

where  is the learning rate. The training process of the 

actor-network: The policy obtained from the algorithm 

should be updated to return the action value in the 

direction which increases Q values. The actor-network 

outputs the action value and the critic network output the 

Q value. Using gradient ascent, the weight parameters of 

the actor-network can be updated as:  

( ),

1
( , | ) | ( | ) | ,

i s ii

Q

a s s a s

i

J Q s a s
N

 


 

         (13) 

 ,w w J  
    (14) 

where  is the learning rate. 

IV. SIMULATION AND RESULT  

A. Simulation Design 

We consider a network comprising a set of UAVs, 

with a sensing radius sr and communication radius cr set 

to 80 m and 160 m, respectively. The UAVs are placed in 

the environment with values of interest distributed 

according to the basic Gaussian function. In more detail, 

we consider a UAV system operating in a two-

dimensional environment that is mapped into a Cartesian 

system with (x, y) coordinates. Our considered model 

corresponds to all UAVs of the same altitude. The 

covered system area is1000m x 1000m . All the network 

parameter settings are given in Table I. Numerical results 

are implemented in the Python programming language by 

utilizing a personal computer with the configuration 

specified in Table II. 

TABLE I: SYSTEM MODEL PARAMETERS 

Parameters Value 

Communication radius 160 m 
Sensing radius 80 m 

Monitoring area 1000 m  1000 m 

Numbers of UAVs 15, 20 

Energy consumption coefficient 8 J/m 

TABLE II: CONFIGURATION FOR USED SIMULATION 

Component Specification 

Processor Intel(R) Core(TM) i7-9750HF CPU @ 2.60GHz 

GPU NVIDIA GeForce GTX 1050 

Driver version 527.37 

RAM 8.00 GB 

 

Agents in the system use a DDPG network structure as 

shown in Table III. The Policy Network has 521 nodes 

with FC1-2 and Output of 2, respectively. The Evaluation 

Network also has a value of 512 nodes with FC1-2 and 

Output of 1, respectively. The basic parameters are 

shown in the following Table IV. 

TABLE III: TRAINING PARAMETERS 

Parameters Value 
Training episodes 500 

Beta 0.002 
Gamma 0.99 

Batch size 64 
Noise 0.1 

Optimizer Adam 

TABLE IV: NETWORK PARAMETERS 

Network Layer Size Activation 

Actor 
FC1 512  
FC2 512  

Output 2 Relu 

Critic 
FC1 512  
FC2 512  

Output 1  

 
Fig. 5. Reward function with N=15. 

 
Fig. 6. Reward function with N = 20. 

B. System Performance 

This section presents the simulation results of the 

DDPG algorithm for environmental monitoring using 

unmanned aerial vehicles. The goal is to evaluate the 

effectiveness of the algorithm in improving system 

performance. Fig. 5 and Fig. 6 depict the value of the 

reward function obtained for the number of training sets 

of 500 in two cases where the number of UAVs is 15 and 

20, respectively.  



The results demonstrate that the algorithm converges 

around the set of 60 for both cases, indicating that the 

algorithm can achieve good system performance with a 

limited number of training sets. Moreover, with 20 UAVs 

in the network, there is wider coverage and a larger 

reward compared to the case with 15 UAVs. The reward 

function improves as the number of iterations increases, 

reaching a 20% improvement at the converged point 

compared to the initial setting value. Overall, the results 

indicate that the DDPG algorithm is a promising 

approach for environmental monitoring through UAVs 

and can significantly improve system performance. By 

providing a comprehensive evaluation of the algorithm‟s 

effectiveness, this study contributes to advancing the 

state-of-the-art in the field of UAV-based environmental 

monitoring. 

Fig. 7 illustrates the convergence of the algorithms as a 

function of the number of UAVs. The results show that 

the convergent reward value increases with an increase in 

the number of UAVs, indicating that a larger number of 

UAVs leads to a higher system performance. For example, 

when there are only 20 UAVs in the network, the reward 

function is approximately 100. However, with 20 UAVs 

covering the network area, the reward function 

significantly increases to over 6000. These outcomes 

demonstrate that the DDPQ algorithm is highly effective 

in improving system performance, particularly in large-

scale networks, and outperforms other conventional 

algorithms. 

 
Fig. 7. Converged values for the different number of UAVs. 

 
Fig. 8. Time processing for number of UAVs. 

Fig. 8 depicts the processing time of the algorithms in 

relation to the number of UAVs. The results demonstrate 

that as the number of UAVs increases, it takes more time 

for the algorithms to reach the convergent reward value. 

While the DDPQ algorithm yields a higher system 

performance, it is accompanied by a longer processing 

time. Therefore, a trade-off between system performance 

and processing time must be considered when selecting 

the algorithm for practical applications. Fine-tuning the 

algorithm parameters to optimize computational 

complexity may be necessary to strike a balance between 

system performance and processing time. Overall, the 

results suggest that the DDPQ algorithm is a promising 

approach for improving system performance in large-

scale UAV networks, but careful consideration of its 

computational complexity is required for practical 

implementation. 

V. CONCLUSION 

Based on our study, we have shown that unmanned 

aerial vehicles (UAVs) with a deep reinforcement 

learning algorithm can be used to optimize the 

monitoring of an environment. We have formulated an 

optimization problem to maximize the sensing range and 

maintain connectivity between the UAVs. Our proposed 

approach allows for collaboration between UAVs to 

enhance connectivity under experimental conditions, 

including the sensing range and limited energy of each 

UAV. We applied the DDPG algorithm to solve the 

optimization problem, which found the operational policy 

of the UAVs that minimized their traveling energy 

consumption. The simulation results demonstrated that 

our proposed approach outperforms existing methods in 

terms of sensing range and connectivity. Specifically, we 

achieved a sensing range of a covered system area is 

1000m×1000m, with the connectivity of 15-20 UAVs. 

The reward function improves as the number of iterations 

increases, reaching a 20% improvement at the converged 

point compared to the initial setting value. We have 

demonstrated the ability to control many UAVs 

collaboratively, which can improve the accuracy and 

efficiency of data collection.  Scenarios where UAVs 

with different heights or the different joint transmission 

policies between UAVs at the signal processing levels 

should be potential directions to extend our framework 

for future work. 
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