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Abstract—Wireless sensor networks have limited power for 

processing data, storage, and communication. Due to power 

shortages and anonymous attacks, sensor nodes may 
produce faulty or anomaly data which affects the accuracy 

of the entire system. Effective anomaly detection is essential 

to make an accurate prediction of the result. Moreover, 

clustering-based anomaly detection reduces energy 
consumption by avoiding individual sensory data reporting 

to the base station. The proposed methodology consists of 

two phases: Correlated graph clustering, and anomaly 

detection using a Fuzzy model. In the first phase, the spatial 
correlation of the sensor readings is used to generate a 

graph, partitioned into clusters. The intra-cluster and inter-

cluster temporal correlations are analyzed to refine the 
optimized cluster structure. Finally, a fuzzy Mamdani 

model is used to classify the clusters as either normal or 

anomalous based on their membership values. The proposed 

approach leverages both spatial and temporal correlation 
between sensor measurements to form optimized clusters 

that are more effective for anomaly detection. The 

Experiments performed on a real-world dataset of WSNs 

indicate the efficacy of the proposed methodology, which 
shows significant improvement over traditional anomaly 

detection methods the electronic file of your paper will be 

formatted further for final publication.  

Index Terms—Anomaly detection, clustering, data 

aggregation, graph theory, wireless sensor networks 

I. INTRODUCTION 

Wireless Sensor Networks (WSN) has multivariate 
sensing nodes to sense, transmit, and process network 
data. Distributed sensor nodes have self-powered battery 
devices. These Sensor nodes that constantly sense and 
analyze data use more energy. Moreover, Network 
connectivity and computation tasks use 80% of battery 
power [1, 2]. These sensor nodes collect data in the 
sensor field via wireless connections, then send the data 
to a reliable sink node for processing and analysis. There 
are three primary uses for a WSN in any application 
setting. In a WSN, it is the responsibility of each 
deployed sensor node to initially detect and record 

 
Manuscript received April 15, 2023; revised May 4, 2023; accepted 

May 11, 2023. 
*Corresponding author 

specific environmental factors. Secondly, it needs a place 
to permanently store the data it collects and a record of 
some basic processing steps. As a final step, all sensor 
nodes must link to both their neighbors and the sink 
nodes. However, internal and external factors typically 
affect the sensed and collected data in WSNs [3, 4].  

Data generated by a sensor node may contain 
inconsistencies due to factors like noise, inaccuracy, and 
missing values, and there may be resource limitations, 
costs, and battery life. Therefore, the sensor node data in 
WSNs are unreliable and inconsistent. In a sensor node, 
an outlier or anomaly is a measurement that does not fit 
the pattern of previously collected data. Detecting 
anomalies in WSN sensor nodes placed in the field is 
crucial here because of the useful data it provides. 
Therefore, developing a reliable method for finding 
anomalies in WSNs is essential. Recently, numerous real-
time applications have made use of different outlier 
detection approaches in WSN. For instance, if the 
features of the data are unknown, then specific rules must 
be used to identify outliers [5, 6]. 

Traditional anomaly detection methods are often 
limited in their ability to handle the large amounts of data 
generated by WSNs. We propose that Graph-based 
clustering is a common technique used in wireless sensor 
networks (WSNs) to organize nodes into groups for 
efficient data transmission and processing. In this 
technique, the WSN is modeled as a graph, where nodes 
are represented as vertices, and edges connect nodes that 
are within communication range of each other. Clustering 
is the initial stage of the suggested architecture, and it 
involves the use of an optimal clustering algorithm to 
divide datasets into groups based on their similarities and 
differences. The second step involves identifying and 
isolating abnormal clusters in the network through the use 
of an adaptive fuzzy model. Since then, the network’s 
data accuracy and dependability have both improved. 
Also, by preventing the transmission of fraudulent data in 
a sensor network, the lifespan of the network is extended. 

The proposed approach will allow for the completion 

of three primary goals: 

1) A graph-based clustering is utilized to structure the 

optimal clusters for constructing initial structures. 
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2) The purpose of intra and inter-data aggregation is to 

filter out anomalous information before it enters the 

network. 

3) Accurate anomaly detection with fuzzy logic-based 

decision-making. 

The rest of the study is made up of different contexts, 

while Section II details some of the existing techniques in 

relation to the proposed methods. Section III explains the 

suggested methodology’s network architecture and 

problem definition. In Section IV, we outline the 

proposed Graph-based clustering technique that makes 

use of fuzzy rule-based systems. Section V explains the 

performance of the experiments with the results. Section 

VI concludes the proposed research with an experimental 

analysis with state-art-techniques. 

II. RELATED WORKS 

Anomaly detection algorithms are divided into several 

categories, including statistics-based, clustering-based, 

proximity-based, supervised, unsupervised, reinforcement 

learning, and deep learning [7, 8]. Therefore, in this 

section, we summarize a few of the state-art- techniques 

related to anomaly detection in sensor networks. 

Clustering-based anomaly identification techniques begin 

by grouping similar data together, then labeling outliers 

as anomalies. The LEACH algorithm is a traditional 

clustering algorithm [9]. In this approach, nodes 

randomly select themselves as cluster heads and non-

cluster heads are merged with the nearest clusters. The 

primary goal of cluster heads is to aggregate data and 

transmit accurate, consistent data to the base station. 

Graph-based clustering also uses the k-means 

algorithm [10]. This method graphs the network and 

clusters nodes into k groups based on proximity. The 

cluster heads then aggregate and transmit data. This 

approach has certain benefits, such as being 

straightforward, achieving rapid convergence, and 

yielding strong results when working with vast amounts 

of data. However, there are also some drawbacks, such as 

a proclivity to converge towards a local optimal solution 

and being highly reliant on the initial selection of cluster 

centers. Self-Organization Map (SOM) [11] can map data 

onto a two-dimensional plane, allowing for improved 

clustering and visualization of results. However, there are 

some drawbacks to using this method, including its high 

complexity, which makes it highly dependent on the 

user’s experience. 

The CLIQUE algorithm [12] based clustering, 

examines large datasets and high-dimensional data 

efficiently. However, one potential disadvantage of this 

approach is that it may yield suboptimal clustering 

accuracy, which could ultimately affect the accuracy of 

the entire algorithm. A correlation technique for anomaly 

detection was suggested in [13]. The study solely looked 

at geographical correlation, the temporal correlation at 

each sensor reading, and attribute correlation with Fuzzy 

Model.  

One method for finding outliers is the relative 

correlation clustering method [14]. This model is a hybrid 

of clustering and re-clustering, based on the comparative 

cascaded correlation method. The hierarchical clustering 

algorithm [15], is another widely used method that 

clusters nodes based on their similarities. Initially, each 

node is treated as a separate group, and the algorithm then 

iteratively merges groups that share similarities [16]. The 

output of this process is a hierarchical structure, 

represented as a tree where each level corresponds to a 

different degree of clustering. 

The authors of [17] proposed a dynamically connected 

fuzzy system that takes into account temporal, attribute, 

and geographical correlations in order to identify 

multivariate outliers in sensor networks. During data 

consolidation in the cluster’s leader, they deployed an 

outlier identification system. Spectral clustering [18] has 

emerged as a competitive clustering algorithm. However, 

it is not highly scalable for processing large modern 

datasets. Our proposed algorithm overcomes this 

limitation by combining the concepts of spatial-temporal 

clustering and spectral clustering techniques. We identify 

abnormal data as outliers. First, the approach identifies 

outlier candidates in the eigenspace with the least 

frequency of appearance of the second smallest 

eigenvalue. Then, distance-based outlier scores are 

assigned to each data point to rank the candidate outliers. 
Clustering techniques based on minimum spanning 

trees for discovering clusters of variable shape, size, and 
density are studied in [19]. However, outlier 
identification strategies based on minimal spanning tree 
clustering might be computationally expensive. To 
alleviate some of these issues, the authors propose a new 
approach to detect outliers in datasets, inspired by the 
minimum-spanning tree. This approach effectively 
identifies local outliers that deviate from the predominant 
patterns within the dataset. Additionally, the approach is 
compatible with traditional distance-based outlier 
detection methods, thus addressing some of the issues 
associated with those methods. The authors in [20] 
proposed SOM-based anomaly detection which involves 
constructing a candidate model using a customized self-
organizing network partition and then grouping normal 
and anomalous data points and then an adaptive fuzzy 
inference system is applied to separated clusters of 
CSOM with fuzzy logic rules to identify any anomalies. 

In [21], the authors presented a new clustering 

algorithm called HPFuzzNDA, which automatically 

adjusts the number of clusters for all classes at each step 

to improve efficiency. By utilizing cluster modifications, 

HPFuzzNDA achieved higher classification accuracy and 

better results in terms of the F-score measure. The 

authors in [22] focused on using clustering technology in 

the ODCASC algorithm to predict anomalous node data 

while incorporating spatial correlation for decision-

making. However, this algorithm solely emphasized 

spatial correlation and did not consider attribute 

relationships in multivariate data analysis, resulting in 

lower accuracy compared to our proposed approach.  
Graph-based clustering in WSNs can offer several 

advantages, such as reducing energy consumption and 

increasing network scalability. However, the performance 

of the clustering algorithm depends on the network 

topology, the distribution of sensor nodes, and the 
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communication protocol used. Therefore, it is carefully 

designed and evaluated to ensure optimal performance in 

different network scenarios. 

From the literature survey, traditional algorithms 

perform well with their methodology, but their detection 

rate and false alarm rate are not satisfactory. However, 

the proposed method addresses these limitations by 

improving detection accuracy, reducing complexity, and 

minimizing energy consumption. To achieve this, the 

proposed approach utilizes a correlated graph clustering 

and anomaly detection approach that incorporates a fuzzy 

model. By leveraging a graph-based clustering algorithm 

that accounts for spatial and temporal correlations among 

sensor measurements, the proposed method generates 

more efficient clusters for detecting anomalies. 

III. NETWORK STRUCTURE AND PROBLEM STATEMENT 

WSN clustering models organize nodes into groups 

called clusters, with each cluster having a leader known 

as a cluster head (CH) that mediates communications 

between the members of the cluster and the base station 

(BS). WSN clustering, as represented by the network 

model, consists of three distinct but interrelated phases: 

cluster creation; inter-cluster communication; and data 

transmission to the BS. The cluster creation phase entails 

the process of grouping nodes into clusters according to 

proximity, node density, or some other factor. Node 

energy, node degree, and node centrality are just a few of 

the metrics that are used to determine which nodes will 

serve as cluster heads. During the Inter-cluster 

communication phase, the cluster leaders interact and 

share information about their various groups. 

 

Fig. 1. Network structure. 

During the data transmission phase, cluster leaders 

send the information gathered by their nodes to the 

network’s server. The data is sent back to the base station 

where it is processed and action is taken. In distributed 

clustered structures, heterogeneous sensor nodes are 

considered. During data aggregation, the cluster head 

performs aggregation and anomaly detection processes 

hence it has more power than normal sensing nodes 

Fig. 1 depicts the infrastructure used by a typical WSN 

to aggregate data at its Cluster Heads (CHs). Clusters 

drastically increase the lifespan of a WSN by prohibiting 

the blind transmission of all the data collected by each 

sensor node and so reducing energy consumption. Data in 

each cluster is forwarded and aggregated by the CH. The 

data aggregation process ensures data integrity by 

filtering out and deleting any anomalous instances that 

are received from a cluster of sensor nodes [23]. In the 

wake of anomaly detection, the collected data are 

transmitted to the home base for further examination and 

policymaking. 

The proposed model for anomaly detection in wireless 

sensor networks (WSNs) uses a graph G(S, D) to 

represent the network structure, where G(S, D)) consists 

of a set of sensor nodes S and a set of hop connection 

distance D. The sensor nodes S are defined as S={s1, s2, 

, sn} where n is the total number of sensor nodes in the 

WSN. The hop distances D are defined as D={(si, sj)|si, sj

∈S, and there is a hop connection between si and sj} 

where (si, sj) represents the link connecting sensor node si 

to sensor node sj. The D also emphasize the connections 

between the sensor nodes in the WSN and can be used to 

capture the spatial correlation between the sensor 

measurements. By using this graph-based representation, 

the proposed model can leverage the spatial correlation 

between sensor measurements to partition the network 

into clusters and identify anomalous events. The edges in 

Graph G can also be used to calculate the minimum path 

to aggregate data to reach the cluster head, which can 

improve the efficiency of the anomaly detection process. 

IV. PROPOSED METHODOLOGY 

Anomaly detection is a critical challenge in various 

domains such as industrial automation, security 

monitoring, and medical diagnosis. The ability to identify 

anomalies rapidly and accurately in large datasets of 

sensor measurements can help in preventing system 

failures, detecting potential security breaches, and 

diagnosing medical conditions. However, conventional 

anomaly detection methods face difficulty in managing 

large volumes of data and intricate correlations between 

sensor measurements, which are typical in these 

applications. Hence, there is a need for more effective 

approaches that can handle these challenges and provide 

accurate detection of anomalies. The proposed approach 

involves two stages, correlated graph clustering and 

anomaly detection utilizing a fuzzy model shown in Fig. 

2. 

In the correlated graph clustering stage, a graph is 

created from the sensor measurements based on their 

spatial correlation [24]. The graph is then partitioned into 

clusters, forming the initial structure of the sensory values. 

In the temporal correlation analysis stage, the intra- and 

inter-cluster temporal correlations are analyzed and used 

to refine the cluster structure. Specifically, the temporal 

correlations are used to reform the clusters based on the 

temporal relationships between the sensor measurements. 

In the cluster optimization stage, edge connectivity and 

vertex connectivity are applied in each cluster generated. 

An Optimized Spanning Tree (MST) technique is applied 

to determine the shortest path for sending aggregated data 

Sensor 

Nodes 

Cluster 

Heads 

Inter-Cluster 

Communication 

Data 

Transmission 

Cluster Formation 
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to the cluster head. A set of spatially and temporally 

optimized clusters is the end result of this procedure 

being applied to each cluster individually.  

 

Fig. 2. Schematic diagram of the proposed methodology 

In the anomaly detection stage, a fuzzy Mamdani 

model is used to classify the clusters as either normal or 

anomalous based on their membership values. The 

approach calculates membership values based on a set of 

linguistic rules that capture the spatiotemporal correlation 

among sensor measurements. The proposed approach 

utilizes the spatiotemporal correlation between sensor 

measurements to group enhanced clusters that are more 

efficient in detecting anomalies. By incorporating an 

optimized MST and a fuzzy model, the approach is able 

to further refine the cluster structure and accurately 

classify anomalous clusters. 

A. Correlated Graph Clustering Method 

Step 1: Create a graph G(V, E) with n vertices sensor 

nodes and e edges hop connection [25]. Edges represent 

single-hop connections among nodes in intra-cluster and 

multi-hop connections among nodes in inter-clusters. 

Step 2: Create the adjacency matrix A of G, it is a 

square grid in which the rows and columns show the 

vertices and the entries show the edges between the 

vertices. More specifically, the entry in the i
th

 row and j
th

 

column of the matrix is 1 if there is a hop connection 

between vertices si and sj and 0 otherwise. 

Step 2.1: After the adjacency matrix A, compute the 

proximity matrix P, which gives the minimum and the 

maximum edges between each pair of vertices in G. To 

compute the proximity matrix P, distance or similarity is 

used for the nodes in the graph.  

Pairwise adjacency matrix PA, where PA(i, j) = 1 if 

there is a hop connection between i and j, and PA(i, j) = 0 

otherwise. Since G is an undirected graph, PA is a 

symmetric matrix, and PA(i, j) = PA(j, i). 

Step 2.2: The proximity distance matrix PD for graph G 

with n sensor nodes can be represented by an nn matrix, 

where PA(i, j) denotes the distance or proximity between 

two random nodes as shown in Eq. (1): 

 ,D i j
n n

P


 
 

P                              (1) 

The values in the proximity matrix depend on the 

specific definition of distance or similarity used for the 

nodes in the cluster. If the similarity between nodes is 

defined based on some feature vectors associated with the 

nodes, the proximity matrix is calculated using similarity 

measures like Euclidean distance. Here we are using the 

Mahalnobis distance metric for similarity measure. It 

calculates distance with correlation by considering the 

correlation matrix instead of the covariance matrix. 

Step 3: Spectral sparsification is performed in a sparser 

subgraph of the original graph G while approximately 

preserving certain spectral characteristics of the original 

graph. The eigenvalues and eigenvectors of the graph 

Laplacian, a matrix that represents the graph’s 

connectivity and structure, are related to the spectral 

qualities. 

Step 3.1: To find the adjacency matrix in spectral 

sparsification, let SA be the nn spectral adjacency matrix 

of G, where SA(i, j)=1 if there is a hop connection 

between two vertices and SA(i, j)=0 otherwise. The degree 

of vertex i is defined as di = sumj SA(i, j), and the degree 

matrix DM is a diagonal matrix with DM(i, j)=di. 
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Step 3.2: The graph Laplacian is symmetric, positive 

semidefinite matrix L of G has the formula L = DMSA. 

The graph is highly connected and inferred from L’s 

eigenvalues and eigenvectors. 
Step 3.3: To perform spectral sparsification, we aim to 

find a sparse subgraph of G that approximates the 
Laplacian matrix L. Low-rank approximation of L is 
obtained by the maximum values of eigenvalues and 

eigenvectors of L. Let λ1 ≥λ2 ≥ ≥λn be the eigenvalues of 

L, and let O1, O2, , On be the corresponding 
orthonormal eigenvectors. The k-dimensional subspace 
spanned by the top k eigenvectors is denoted by Vk, and 
the projection of L onto Vk is denoted by Sk.  

The matrix Sk is a low-rank approximation of L, and 
it can be used to construct a sparse subgraph of G by only 
including the edges that correspond to the non-zero 
entries of Sk. Specifically, we define a weight function 
W(Edgei) for each edge in G. W(Edgei) = ||vi - vj||

2 
if there 

is an edge between vertices i and j, and W(Edgei) =0 
otherwise. The weight function is based on the 
Mahalanobis distance between the corresponding 
eigenvectors of the vertices connected by the edge. As a 
next step, we find the minimum spanning tree of the 
weighted graph and only use its edges in the subgraph. 
Depending on factors like the desired approximation error 
and available processing resources, k can have a range of 
values. 

Step 3.4: Use spectral sparsification to create a sparse 

graph ( , )G V E  that approximates the original graph G, 

where E  is a subset of E. Spectral sparsification is a 
technique for approximating a dense graph with a sparse 
graph while preserving certain properties. The resulting 
sparse graph can be used to speed up certain algorithms 
or reduce memory usage, while still maintaining the 
important structural properties of the original graph. 

Step 4: Find the Shared Nearest Neighbors (SNN) of 

each vertex in G . Let ( , )G V E  be the sparsified 

graph obtained in Step 3, where V  is the set of nearest 

sensor nodes and E  is the set of minimal hop connection 

links. Then, we can define the proximity matrix PD for G  

as an n’n’ matrix, where PD(i, j) represents the similarity 
or distance between vertices i and j in G’. This matrix is 
using the correlation coefficient and Euclidean distance. 

The SNN of a vertex vi in G  as the set of vertices that 

share at least one neighbor with vi as shown in Eq. (2) 

      SNN | ,   , ini i i k j k kv v V v v E v v E v V      (2) 

Using the proximity matrix PD, SNN is calculated of 

each vertex in G  by finding the k-nearest neighbors of 

each vertex based on their similarity or distance. 

Specifically, we can define the k-nearest neighbor graph 

Gk as the graph obtained by connecting each vertex vi in 

G  to its k nearest neighbors in terms of PD, i.e. 

(vi, vj) in Ek if vj ∈ k-nearest neighbors of vi ∈ PD 

Finally, we can group vertices that have at least k 

shared nearest neighbours into the same cluster, i.e. 

Ci = {vj in V  | |SNN (vi) ∩ SNN (vj)| ≥ k} 

The parameter k can be tuned to control the size and 

density of the resulting clusters and can be chosen based 

on the specific application and the desired trade-off 

between sensitivity and specificity. 

Step 5: The centrality of a vertex and edges in a graph 

is a measure of its importance, which can be calculated in 

various ways. Betweenness centrality is calculated by 

considering the shortest paths between all pairs of nodes 

in the graph. 

Step 5.1: The betweenness centrality of a vertex, 

SCV(γ), is computed with all-pairs shortest paths that 

pass through γ as 

 
 

 

  ( , | )
BCV

,

      


  

 



         (3) 

where ( , )    is the count of minimal paths between 

nodes and ( , | )     is the possible count of shortest 

paths between nodes  and  that traverse to node γ. 

Vertices with high betweenness centrality are crucial for 

maintaining the connectivity of the graph, and their 

removal can result in the graph becoming disconnected or 

fragmented. 

Step 5.2: The betweenness centrality of an edge link, 

BCE(δ), is computed based on all paths between pairs of 

sensor nodes that traverse to an edge link δ, divided by 

the minimal paths between those pairs of nodes in the 

graph as 

    2 ( , | )
BCE , ,  

( , )
V

   
    

  

 
    

 
       (4) 

where V is the set of sensor nodes in the graph, ( , )     

is the total number of shortest paths from vertex α to 

vertex β, and ( , | )    is the number of those shortest 

paths that traverse to an edge δ. 

Step 6: Vertex connectivity is the minimal number of 

vertices that holds the graph as a single component. Edge 

connectivity is the least number of edges that holds the 

graph as a single component. To find highly connected 

components using vertex and edge connectivity, we can 

use the following steps: 

1. Let HCC = {} be an empty set to store the highly 

connected components. 

2. For each vertex v in the graph: 

Compute the vertex connectivity of v, denoted VC(v), 

as follows:  

i. Let G’ = (V’, E’) be the subgraph of G by 

removing v. 

ii. Count the number of disconnected components in 

G’, denoted c(G’).  

If VC(v) ≥ k, where k is the desired threshold: Add v 

to a new set of highly connected vertices, denoted 

HCV. 

3. For each edge e in the graph: Compute the edge 

connectivity of e, denoted EC(e), as follows: 

1) Let G’ = (V’, E’) be the subgraph of G by 

removing e. 

2) Count the number of disconnected components in 

G’, denoted c(G’).  
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If EC(e) ≥ k, where k is the desired threshold: Add e 

to a new set of highly connected edges, denoted HCE. 

4. Use HCV and HCE to form highly connected 

components:  

Let CC = {} be an empty set of components.  

For each vertex v in HCV:  

1) Let HCE(v) = {e ∈ HCE: v is incident to e} be the 

set of highly connected edges incident to v.  

2) Let U = {u:(v, u) ∈ E∨(u, v) ∈ E} be the HCE 

edge-incident vertices (v). 

3) Add the component {v}∪U to CC.  

For each edge e in HCE:  

1) Let U = {u: (u, e) ∈ E ∨ (e, u) ∈ E} be the 

vertices of e. 

2) Let HCV(e) = {v ∈ HCV: e is incident to v} be 

the set of highly connected vertices incident to e.  

3) Add the component {e}∪U∪U {v ∈ HCV(e)} 

U(v) to CC. 

5. Return the set of highly connected components HCC. 

Step 7: Chameleon methodology performs 

agglomerative clustering based on cluster similarities. 

The algorithm proceeds as follows: 

1. Initialize each data point as a cluster, each with a 

single point C = {Ci}, where Ci = {xi} 

2. Compute the similarity matrix S between every pair 

of clusters S = {si,j}, where si,j = similarity (Ci, Cj) 

3. While the number of available clusters is greater than 

the desired number of candidate clusters k: 

while |C| > k: 

1) Determine the clusters Ci and Cj with the highest 

similarity (i, j) = argmax si,j  

2) Join clusters Ci and Cj into a new cluster Cm = Ci∪
Cj 

3) Recompute the similarity between Cm and all other 

clusters 

for each k != i,j, sk,m = similarity(Ck, Cm)  

a. Update the similarity matrix by replacing the rows 

and columns of Ci and Cj with the row and column 

of Cm, respectively, and removing the (i,j) entry 

b. S = {sk,l}, where sk,l is the similarity between 

clusters Ck and Cl, and Ck = Ci ∨Cj ∨Cm, and Cl = 

Ci ∨Cj ∨Cm, and si,j entry is removed 

4. Return cluster C. 

The final optimal clusters are confirmed and given as 

input of the fuzzy inference system for anomaly detection. 

The overall procedure is summarized in the following 

algorithm. 

Algorithm: Correlated Graph Clustering with Fuzzy Anomaly Detection 

Input: 

n: integer, the vertices (sensor nodes) 

e: integer, the edges (hop connections) in the graph 

h: integer, the maximum number of hops allowed for the proximity matrix 

ε: float, the error tolerance for spectral sparsification 

spatialCorrelationData: dictionary, where the keys are pairs of vertices (i, j) and the values are 

the spatial correlation values between those vertices 

temporalCorrelationData: dictionary, where the keys are pairs of vertices (i, j) and the values 

are the temporal correlation values between those vertices 

Output: 

normalClusters: listings of normal cluster vertices. 

anomalousClusters: listings of anomalous cluster vertices 

Begin 

1: CreateGraph(n, e) with n vertices and e edges G(V,E), V denotes the sensor nodes and 

E denotes the hop connection between the nodes 

2: Create ProximityMatrix(G, h) of the graph G, PM(G) = {(i, j) : min-hop(i, j) ≤ h} 

where h is a threshold for the maximum number of hops allowed 

3: Perform SpectralSparsification(G, ε) on the graph G, Gs = Sparsify(G, ε) 

4: FindSharedNeighbours(Gs, spatialCorrelationData, temporalCorrelationData) For 

vertices v1 and v2, if they share more than one neighbour, and have both spatial and 

temporal correlation above a threshold, place them in the same cluster 

5: Find the centrality of G,  

ComputeVertexBetweenness(Gs) and ComputeEdgeBetweenness(Gs)  

CB(Gs) = {(i, bi) : i ∈ V, bi is the betweenness of vertex i}  

CE(Gs) = {(e, be) : e ∈ E, be is the betweenness of edge e} 

6: MSTAlgorithm(Gs, sharedNeighbours) Generate MST for each cluster 

7: ChameleonAlgorithm(MST, mahalanobisDistanceThreshold), Apply the Chameleon 

algorithm to reform clusters based on Mahalanobis distance 

8: Find highly connected components with vertex and edges 

vertex connectivity FindVertexConnectedClusters(Gs) and  

edge connectivity FindEdgeConnectedClusters(Gs) 

9: Generate optimal clusters using vertex connectivity and edge connectivity 

10: Apply Mamdani Fuzzy Inference System to separate normal and anomalous clusters  

a. For Each cluster in clusters 
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b. If IsNormalCluster(cluster, MFIS) Then 

normalClusters.Add(cluster) 

c. Else 

anomalousClusters.Add(cluster) 

d. End If 

e. Next 

End 
 
B. Classification using Fuzzy Inference Systems 

Fuzzy logic is a powerful tool for dealing with such 

systems by providing a way to represent and manipulate 

linguistic variables and their associated degrees of 

membership in a fuzzy set. A fuzzy rule base, fuzzifier, 

inference engine, and defuzzifier comprise the Mamdani 

FIS. The rule base encodes expert knowledge or data-

driven patterns as if-then rules [26]. Membership 

functions turn crisp inputs into fuzzy sets. The inference 

engine generates fuzzy outputs from fuzzy inputs using 

fuzzy rules. Aggregation functions defuzzify fuzzy values. 

In anomaly detection, the Mamdani fuzzy model can 

be used to identify anomalous behavior by modeling the 

normal behavior of the system and detecting deviations 

from this behavior. The model can be trained using real-

time historical datasets to identify the typical behavior of 

the system and then used to detect anomalies in real-time 

data by comparing the current data to the model [27]. 

Fuzzification: This step transforms the crisp inputs into 

fuzzy sets. The degree of membership of an input x in a 

fuzzy set A is given by the membership function µA(x). 

Rule Evaluation: The fuzzy rules represent the 

knowledge of an expert or a set of experts. The rule 

evaluation stage calculates each rule’s support based on 

the inputs’ fuzzy set membership in the rule’s antecedent. 

Rule R’s support is: 

WR = min(µA1(x1), µA2(x2), , µAn(xn)) 

where WR is the weighted rule and µAi(xi) is the 

membership function for an input xi in Ai. 

Aggregation: This step aggregates the outputs of all 

rules to form a single output fuzzy set. This is done using 

the maximum operator (OR) as follows: 

µC(y) = max( *

RW µC(y|R)) 

where *

RW  is firing strength of the rule and µC(y|R) is the 

degree of membership of output fuzzy set C for the rule R. 

The crisp values will be converted into fuzzy 

linguistic variables by the fuzzy inference engine to 

construct IF-THEN rules in a predictable way that is in 

keeping with its underlying principle. Anomaly detection 

fuzzy if-then rules generated by the proposed approach 

are presented in Table I. 

TABLE I: FUZZY RULES FOR ANOMALY DETECTION 

Rules 
IF clause THEN clause 

DC SC CV TT  

1 low low low low Anomalous 

2 low low low medium Anomalous 

3 low low low high  Suspicious 

4 low low medium low Anomalous 

5 low low medium medium Suspicious 

6 low low medium high  Suspicious 

7 low low high  low Anomalous 

8 low low high  medium Suspicious 

9 low low high  high  Suspicious 

10 low medium low low Anomalous 

11 low medium low medium Suspicious 

...... 

27 low high  high  high  Normal 

28 medium low low low Normal 

29 medium low low medium Normal 

30 medium low low high  Normal 

31 medium low medium low Suspicious 

32 medium low medium medium Suspicious 

33 medium low medium high  Suspicious 

34 medium low high  low Suspicious 

35 medium low high  medium Suspicious 

36 medium low high  high  Suspicious 

37 medium medium low low Normal 

…… 

53 medium high  high  medium Anomalous 

54 medium high  high  high  Anomalous 

55 high  high  high  high  Normal 

56 high  high  high  medium Normal 

57 high  high  high  low Suspicious 

58 high  high  medium high  Normal 

59 high  high  medium medium Suspicious 

60 high  high  medium low Anomalous 

61 high  high  low high  Suspicious 

62 high  high  low medium Anomalous 

63 high  high  low low Anomalous 

64 high  medium high  medium Normal 

…… 

80 high  low low medium Anomalous 

81 high  low low low Anomalous 

TABLE II: SAMPLE INSTANCE OF FUZZY MEMBERSHIP CLASSIFICATION 

Membership value instances 

Input matrix Output vector 

DC SC CV TT Normal Suspicious Anomalous 

High High Low High 0.8 0.2 0.0 

Low Low High Medium 0.1 0.4 0.5 

High Low High Low 0.7 0.1 0.2 

Medium High Low High 0.6 0.3 0.1 

 

For instance, the input matrix has four rows, each 

representing a different set of values for the input 

variables. The output vector has the same number of rows 

as the input matrix, with each row representing the 

corresponding output values based on the input values 

shown in Table II. The output vector shows the degree of 

membership of each cluster type (normal, suspicious, and 
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anomalous) based on the input values shown in Fig. 3 and Fig. 4. 
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(c)                                                                                                            (d) 

Fig. 3. Input membership functions: (a) Data connectivity, (b) spatial correlation, (c) trained threshold value, and (d) cluster overlapping. 
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Fig. 4. Output membership function: (a) Normal cluster, (b) anomalous 
cluster, and (c) suspicious cluster. 

V. RESULTS AND DISCUSSION 

Two real-world datasets are utilized to assess the 
effectiveness of the suggested methodology. The efficacy 
of the model is measured by its ability to detect outliers, 
as well as by its specificity, F1 Score, and false alarm rate. 
The distinctive inferential relevance of the proposed 
approach is further confirmed through a comparison with 
existing methods. 

The Intel Berkeley Research Laboratory uses 
Mica2Dot sensors with weatherboards [28]. Mica2Dot 
sensors with weatherboards collect time-stamped 
topological data, humidity, temperature, light, and 
voltage every 31 seconds The ISSNIP dataset contains 
standard WSN motes’ sensor data. Our experimentation 
uses two clusters of four sensor nodes installed indoors 
and outdoors, with one node as the cluster head. 
Temperature and humidity were measured at 5-second 
intervals for six hours. Random probability-based 
corruption produced conflicting data [29].  

Our proposed system exhibited good performance in 
all performance metrics when evaluated on a dataset 
comprising 785,800 samples from IBRL and 5,210 
samples from the ISSNIP dataset. This performance was 
maintained even as the dataset size increased. 

Performance metrics such as accuracy, False Alarm 
Rate (FAR), precision, sensitivity, specificity, and F1 
score are often used. In this situation, the performance of 
an anomaly detection model can be described by the 
terms True Positive, True Negative, False Positive, and 
False Negative. True Positive (TP) means that the model 
correctly finds an outlier in the data that is actually there. 
True Negative (TN) means that the model correctly says 
that a data point that is not abnormal is normal. False 
Positive (FP) is when the model mistakes a normal data 
point for an anomaly. False Negative (FN) is when the 
model misses an anomaly in the data that is actually there. 
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The following equations are used to figure out the 
performance evaluation metrics. 

1: Accuracy = (TP + TN) / (TP + FP + TN + FN) 

2: FAR= FP / (FP + TN) 

3: Precision = TP / (TP + FP) 

4: Sensitivity or recall = TP / (TP + FN) 

5: Specificity = TN / (FP + TN) 

6: F1 score = 2PrecisionSensitivity/(Precision + 

Sensitivity) 

Fig. 5 depict the spectral cluster nodes of the dataset 

before grouping them into clusters. During the training 

phase, two real dataset correlations are analyzed and 

thresholds are fixed for the testing phase. The 

connectivity and spatial-temporal correlations are 

illustrated in Fig. 6. For improving the efficacy of the 

proposed system, synthetic datasets are created and 

random anomalous data are inserted.  
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Fig. 5. (a) Spectral clusters for anomaly detection (IBRL). (b) Spectral 
clusters for anomaly detection (ISSNIP). 
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Fig. 6. (a) Spatial and temporal correlation of clusters (IBRL). (b) 

Spatial and Temporal correlation of clusters (ISSNIP). 
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Fig. 7. Detection rate versus false alarm rate. 

Fig. 7 shows a comparison of the performance of the 

proposed method with the existing based on the anomaly 

detection ratio. It shows that the proposed method works 

well than the method that is already being used. 

TABLE III: OVERALL PERFORMANCE MEASURES OF PROPOSED METHODOLOGY 

Metrics 
IBRL: Anomalous Data Corruption Level (%) ISSNIP: Anomalous Data Corruption Level (%) 

5% 4% 3% 2% 1% 5% 4% 3% 2% 1% 

Sensitivity  0.98 0.97 0.96 0.98 0.97 0.97 0.97 0.96 0.98 0.97 

Specificity  0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.98 0.99 0.99 

Precision 0.96 0.98 0.96 0.97 0.97 0.97 0.98 0.96 0.97 0.98 

FAR 0.04 0.03 0.04 0.02 0.06 0.06 0.03 0.04 0.04 0.07 

Accuracy 0.99 0.99 0.98 0.99 0.99 0.96 0.99 0.97 0.99 0.99 

F1 Score 0.97 0.97 0.96 0.97 0.97 0.97 0.98 0.95 0.96 0.96 

TABLE IV: COMPARISON OF PROPOSED METHODOLOGY WITH EXISTING METHODOLOGY 

Models 
IBRL Dataset ISSNIP Dataset 

Computation complexity 
Detection accuracy F1 Score Detection accuracy F1 Score 

Proposed method 99.43% 96% 98.65% 96% O(n2logn + ε-2 + kn2logn) + O(c) 

SOM clustering [19] 96.67% 87% 94.86% 81% O(kni)+ O(c) 

Spectral clustering [17] 94.34% 88% 92.87% 91% O(n3 + kni)+ O(c) 

MST [18] 84.32% 82% 82.56% 79% O(nlogn) + O(c) 
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The proposed method has the highest performance, 

followed by SOM clustering [19], spectral clustering [17], 

and MST [18]. Fig. 10 shows the proposed method 

efficacy and existing methodologies by varying 

anomalous data corruption levels. The Anomalous data 

corruption rate ranges from 10% to 50%, while the y-axis 

represents the detection rate and ranges from 0.8 to 1.0 

(i.e., 80% to 100%). The legend shows which line 

represents each method, and a grid is added to the plot for 

better visualization.  
Table III indicates the results of each performance 

metric for the proposed Methodology. This indicates the 

model’s capability to detect abnormal instances with 

minimum error and maximum accuracy. 

The performance comparison of the proposed 

methodology with IBRL and ISSNIP datasets by 

representing values of accuracy, F1 Score, and 

computational complexity is shown in Table IV. The 

overall computational complexity of the proposed 

methodology can be expressed as:  

O(n
2
logn + ε

2
 + kn

2
logn) + O(c) 

where n is the number of sensor nodes, k is the number of 

cluster groups, e is the number of connection links, h is 

the maximum number of hops allowed, ε is the error 

tolerance for spectral sparsification and c is the final 

group of anomalous clusters. The computational 

complexity of the spectral clustering algorithm for 

complex data is O(n
3 

+ kni) + O(c) with i iterations. The 

complexity comes from the computation of the similarity 

matrix. The computational complexity of the SOM 

clustering algorithm depends on the size of the input data 

and the neurons training in the network. For the dataset 

with n input data feature vectors and a network of m 

neurons, the computational complexity is O(ikn) + O(c) 

with i iterations. The computational complexity of MST 

is O(n
2
) for a dense graph. However, the complexity can 

be reduced to O(nlogn) in sparse graphs using efficient 

algorithms such as Kruskal’s algorithm.  

100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

Sensor Nodes

A
cc

u
ra

cy
 &

 F
al

se
 A

la
rm

 R
at

e

 

 

Accuracy

False Alarm Rate

 
Fig. 8. Scalability of the proposed method. 

Fig. 8 depicts the scalability of the proposed method by 

varying the data samples from 10% to 100% in the 

number of sensor nodes. It can be observed that the 

accuracy of the proposed method remains consistently 

high at around 97.8% even at the maximum size of sensor 

nodes. However, the false alarm rate of the methodology 

may slightly increase at the maximum size of sensor 

nodes. Overall, the proposed methodology exhibits good 

accuracy and a low false alarm rate in both vertical and 

horizontal scalability measures. 

VI. CONCLUSION 

The usage of wireless sensor networks provides unique 

issues due to the restricted power of sensor nodes, which 

might lead to inaccurate or anomalous data. Effective 

anomaly detection is crucial to ensure accurate prediction 

of results and reduce energy consumption. Clustering-

based anomaly detection is a promising approach that can 

minimize individual sensory data reporting to the base 

station. An added advantage is to minimize individual 

sensory data reporting to the base station and reduce 

energy consumption. The proposed methodology in this 

study employs a correlated graph clustering phase and an 

anomaly detection phase using a Fuzzy model to classify 

clusters as normal or anomalous based on their 

membership values. By incorporating both spatial and 

temporal correlation between sensor measurements, this 

approach optimizes the cluster structure and significantly 

improves upon traditional anomaly detection methods in 

real-world WSN datasets. This research contributes to the 

development of an optimal anomaly detection method 

that improves data transmission reliability and accuracy. 

The effectiveness of the proposed approach may depend 

on the quality of the initial cluster formation and the 

accuracy of the Fuzzy model used in the anomaly 

detection phase; this limitation will be considered in the 

future research. 
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