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Abstract—The automotive industry has developed Dedicated 
Short-Range Communication (DSRC) technology for 

specific Vehicle-to-Vehicle (V2V) and Vehicle-to-
Infrastructure (V2I) communication applications. However, 

the effectiveness of DSRC communication is highly 
dependent on other integrated standards for 

interoperability, which is still room for research, especially 
under high mobility. Deep learning has recently played a 

crucial role in boosting the system performance in 5G-and-
beyond networks. This paper utilizes deep learning to 

improve the channel estimation quality of DSRC systems 
under time-variant and frequency-selective channels and 
applying a post filtering process to enhance the quality of 

reconstructed images. We consider an OFDM-based system 
where the propagation channels are roughly estimated at 

the receiver by a low-cost least squares method. Then, the 
channel estimation quality is enhanced by a data-driven 

approach exploiting supervised learning. Numerical results 
manifest the added benefits of deep learning for improving 

the channel estimation quality and boosting the Bit Error 
Ratio (BER) compared to the traditional estimation 

methods. Besides, a post-filter is necessary to remove 
artifacts and residual errors in recovered image data.  
Quantitatively, the support of deep learning improves the 

channel estimation quality by about 30%. At the same time, 
the post-filtering process enhances the reconstruction 

quality in terms of the Peak-Signal-to-Noise Ratio (PSNR) 

up to 4dB.  

Index Terms—DSRC technology, OFDM, channel 

estimation, deep learning, image data 

I. INTRODUCTION 

Wireless communication networks have been 
successfully deployed in the Fifth Generation (5G) by 
eliminating the access boundary, enhancing spectral and 
energy efficiency, and providing high data rate and low 
latency limitations on connectivity worldwide [1, 2]. The 
achievements of 5G networks are in response to the 
proliferation of many different devices with data-hungry 
applications simultaneously accessing the networks at the 
same time and frequency resource. Many advanced 
technologies should be integrated into the network 
infrastructure to attain superior improvements in system 
performance. More details, for improving the 
transmission quality by only utilizing the linear 
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detection/transmission techniques at the transceiver, 
massive Multiple-Input Multiple-Output (MIMO) has 
been approved its success in both academia and industry 
[3, 4]. In Massive MIMO communications, the 
randomness of the channel gains can be approximated by 
a deterministic mean value, thereby simplifying the signal 
processing and attaining the spectral efficiency close to 
the optimal in many scenarios. For short-range 
applications, the above-6GHz frequency range called 
mmWave communication has been suggested in, for 
example, [5, 6] and references therein. Thanks to the use 
of very high carrier frequencies, mmWave 
communication systems offer new stable facilities to 
acquire the high peak transmission rate with broadband 
radio links and dominant line-of-sight paths. Nonetheless, 
the challenging questions still remain as to how the 
mmWave technology could be utilized reliably for the 
applications of vehicular communications [7]. 

Intelligent Transport System (ITS) communication 

systems are parts of 5G-and-beyond networks with plenty 

of new technical and specific methodologies to efficiently 

guarantee the transport systems are secured and reliable 

[8, 9]. Dedicated Short-Range Communication (DSRC), 

known as IEEE 802.11p or WAVE, is a medium and/or 

short-range radio frequency communication technology 

designed, specifically for vehicle environments toward 

real-time, good data throughput, accurate, and reliable 

connectivity between vehicles and vehicles with high 

mobility [10]. DSRC can ensure the transmission rate and 

communication quality among the vehicles without any 

support from roadside infrastructure. The DSRC 

technology has been recommended to integrate into 5G 

new radio communications to increase performance 

safety [11]. Nevertheless, DSRC may not effectively 

meet the strict requirements of multimedia 

communication services, especially on detailed 

information preservation and high-resolution files, due to 

its limited coverage and capacity, and therefore still room 

for future study.  In addition, as represented in [12], the 

traditional signal processing techniques may suffer from 

high costs to obtain the global solution; thus, they are 

only considered to evaluate the system performance in 

research and still cannot be implemented in practical 

systems for the time being.   
Image and video are regularly used data in Vehicle-to-

Vehicle (V2V) and vehicle-to-infrastructure (V2I) 
communications. Large-size and detailed information 
contained in images and videos raises a vital issue that 
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has attracted a lot of interest in upgrading the 
performance efficiency due to higher data throughput 
demands and increasing data resolution nowadays than 
before. In [13], the authors investigated the high-speed 
image sensors for V2V communications using visible 
light communication and demonstrated fundamental 
findings for a vehicle motion model and range estimation. 
Besides, quality of service-aware constraints reported in 
[14] allows various types of applications and new 
services ranging from road traffic safety, logistics, and 
infotainment. The system performance and quality of 
media transmission are multivariate functions of required 
data rate, latency, allocated bandwidth, and 
communication reliability. Besides, DSRC 
communication has utilized to send captured license place 
images to the server with real-time information 
acquisition [15]. We note that these previous works more 
focused on the application layer instead of studying the 
system performance in the vision of the physical layer 
with aspects of wireless environments. 

Machine learning in general and deep learning, in 
particular, have recently attracted lots of attention in 
many different fields due to their flexibility and enhanced 
system performance. Deep learning can learn the system 
characteristics from a large amount of empirical data set 
and properly deploy it for performance optimization [16]. 
For the channel estimation, the authors in [17] manifested 
that a fully connected neural network could estimate the 
Rayleigh channels with lower normalized mean square 
errors than the blind method. Apart from this, the 5G-
channel profiles based on the long-term evolution report 
in frequency-selective environments were effectively 
learned and predicted in [18]. For the flat-channel profiles, 
the power allocation can be predicted in sub-milliseconds 
by a deep neural network after sufficiently training to 
learn the features of the wireless networks under near-far 
effects patterns [19]. We notice that there is no related 
work investigating the applications of neural networks for 
Orthogonal Frequency-Division Multiplexing (OFDM)-
based DSRC communication systems and then used it for 
evaluating the system performance. 

To the best of our knowledge, it is the first time in the 
literature we have investigated the image data 
transmission over a DSRC environment and frequency-
selective channels. Several approaches will be proposed 
to enhance the recovered data under high mobility. Our 
contributions are summarized as follows: 
o We present an OFDM system for practical DSRC 

communication under wideband channels and the 
mobility of the transceiver. For practical aspects, the 
channel state information should be estimated at the 
receiver by gathering and processing the pilot signals 
in each OFDM symbol.  

o We investigate a hybrid low-cost channel estimation 
technique, where roughly the least square estimation 
is first used to estimate the instantaneous channels 
roughly. Then, the data-driven approach is applied to 
boost the channel estimation quality by attracting 
more side information with supervised learning. 

o We exploit unsupervised learning to mitigate residual 
errors and enrich the texture of media data via 
processing the spatial correlation among pixels.  

o Numerical results demonstrate the benefits of using 
deep learning for channel estimation in DSRC 
communication systems. Besides, post-data 
processing improves the visualization of recovered 
image signals significantly.  

The rest of this paper is organized as follows: Section 
II presents in detail the considered DSRC communication 
model comprising the network architecture, signal model, 
and propagation channels. The deep learning solution to 
improve the channel estimation quality is shown in 
Section III. Furthermore, Section IV describes a method 
to enhance the fine details of recovered images. The 
numerical results are given in Section V to validate the 
considered DSRC system. Finally, the main conclusions 
are drawn in Section VI. 

II. DSRC COMMUNICATION MODEL UNDER 

FREQUENCY-SELECTIVE CHANNELS 

This section presents the DSRC communication model 
under the mobility and influence of frequency-selective 
fading channels.  

A. Preminary of DSRC Communications 

In this subsection, we focus on the DSRC 

communications adapted to the physical layer with one 

example as illustrated in Fig. 1 for the short-range 

communication between a transmitter and a receiver. 

DSRC communication technology allows a vehicle to 

communicate with other vehicles on the same road or 

other roads. In more detail, the carrier frequency is 

typically selected at 5.9 GHz with the bandwidth up to 75 

MHz recommended by the European ENV standard [20] 

and demonstrates its effectiveness over short to medium 

propagation distances for many different types of 

applications. Under urban environments and none-line-

of-sight (NLoS) communication links, the propagation 

distance that the DSRC technology can be deployed is up 

to 520 m, while it is up to 1219 m on expressways and 

about 1700 m inside tunnels [21].  

V2V: vehicle-to-vehicle

V2I: vehicle-to-infrastructureV2I

V2V V2V

V2I

Internet

 
Fig. 1. The applications of DSRC technology in Vehicle-to-Vehicle 

(V2V) and Vehicle-to-Infrastructure (V2I) communications. 

As reported in [20], the DSRC technology may be 

deployed in both V2V, and V2I formats, relying on the 

basis of 5G cellular networks, as shown in Fig. 1. The 

transmitter and receiver communicate using a transponder 

called on-board units (OBUs) or roadside units (RSUs). 

In particular, a vehicle can transmit data to another 

through an OBU, establishing a V2V communication 

protocol. V2V communication is often used for safety 

purposes, for example, to notify the driver of one car that 

another car in front of it will slow down or nearly stop. In 

V2I communication, a vehicle equipped with an OBU 
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may send data to the surrounding infrastructure, where an 

RSU is installed. The communication purposes are to 

alert the drivers of safety dangers, such as the car turning 

left or right at a crossroad or a curve too quickly. In 

addition, the V2I communication can be deployed for 

collecting tolls and parking payments. For such purposes, 

processing image data is of paramount importance, 

especially with low-resolution images. 

B. Impacts of Frequency Slective Channels on the DSRC 

Communication Systems 

Due to the movement of vehicles, the impacts of time-

variant and frequency selective channels should be a 

crucial research direction in the wireless networks with 

the DSRC technology. In the time domain, the frequency 

selective channels appear as the length of symbols is 

smaller than the delay spread. In the frequency domain, it 

is equivalent to the phenomenon that the channel 

bandwidth is less than the signal bandwidth. The inter-

symbol interference inherently exists in the DSRC 

systems under the frequency selective channels that result 

from the received signal involving multiple versions of 

the transmitted signal with different delays and 

attenuations. 

In order to overcome the reduction of signal power 

over the frequency selective channels, the OFDM 

technology is adopted because of its robustness from the 

multicarrier modulation. The data at the transmitter are 

modulated by a finite set of constellation points, and then 

fed into multiple carriers, each having a sufficiently 

narrow bandwidth to against the deep fading channels. 

The OFDM technology takes advantage of the 

orthogonality frequency relation and spacing among 

subcarriers to enhance the spectrum efficiency. Besides, 

Inter Symbol Interference (ISI) and Inter Carrier 

Interference (ICI) can be degraded by deploying a guard 

interval based on the delay spread and the orthogonality 

relation. Consequently, the OFDM technology is 

preferable for the DSRC systems in both V2V and V2I 

communications. In this paper, we will investigate in 

detail how to design an OFDM system adapting to the 

Doppler effects by the movement of the cars with DSRC 

technology. 

It is evident that the perfect channel state information 

yields the best signal detection at the receiver, and the 

system operates the most reliable according to the real-

time movement of vehicles. However, propagation 

channels are unknown in advance for practical systems 

and should be estimated from the pilot signals. The 

channel estimation errors reduce the quality of the signal 

recovery with a certain Bit Error Ratio (BER). We notice 

that the channel uncertainty directly affects traffic safety, 

which acquires prompt and reliable signals. Consequently, 

a proper channel estimation method is highly required. 

While the Minimum Mean Square Error (MMSE) 

estimation method may be highly challenging to 

implement due to the non-stationary of the real 

propagation channels with an uncommon distribution, the 

linear MMSE estimation method is a suboptimal solution 

that is possible to implement in polynomial time. 

Unfortunately, this estimation is still costly for many 

applications, especially when the vehicles move at high 

speed and the propagation channels vary quickly since 

the channel statistics should be updated very often. The 

least-square estimation is indeed low computational 

complexity and easily implemented without any 

statistical information requirements. The only demerit is 

that the least square estimation method may offer much 

lower performance than the other estimations, especially 

at a low SNR regime. Consequently, some prior 

information on the instantaneous channels should be 

provided to improve the accuracy of the least square 

estimation method.  

III. TRANSMISSION MODEL 

This section presents the system, signal, and channel 

models used in DSRC communications as shown in Fig. 

2. In our considered system model, we assume that the 

instantaneous channels are not available at the receiver, 

and therefore the channel estimation is needed to decode 

the transmitted signals. 

A. Transmitter 

The transmitter sends a bit stream to the receiver. In 

particular, bit data are mapped into the finite constellation 

points by utilizing, for example, (QAM) quadrature 

amplitude modulation. At time slot t, a modulated data 

vector is formulated as 

 1 2( ) [ ( ), ( ), , ( )],Ns t s t s t s t=  (1) 

where sn(t) is the n-th constellation data symbol, and N is 

the number of modulated data symbols sent in this time 

slot.  

 
Fig. 2. The considered OFDM-based DSRC communication system over the frequency selective channels. 

Modulation S/P IFFT P/S Pilot Insertion Guard Insertion 

Frequency  
Selective  Channel 

Noise 

S/P Guard  
Removal Equalization Pilot  

Removal FFT P/S Demodulation Post - 
Fitering 

Channel Estimation 

Restored  
image 

Image Date 
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This modulated data vector will be transformed from 

the frequency domain to the time domain by using the 

Inverse Fast Fourier Transform (IFFT). Let us denote 

( )s t  the data signals in the time domain; then, it is 

formulated as follows 

 ( ) IFFT( ( )).s t s t=  (2) 

After that, a cyclic prefix comprising NG symbols is 

inserted into each OFDM symbol to mitigate the inter-

symbol interference. Consequently, the transmitted data 

signal vector is denoted as ( )s t  that includes NIFFT+NG 

symbols. In practical systems, image data should be 

passed through the source coding for compression due to 

their correlation and memory consumption. However, in 

the literature, many previous works have treated the 

source coding and modulating signals independently 

when considering the system performance of wireless 

networks over fading channels. Jointly compressing and 

modulating data are of interest for future work. 

B. Channel Modelling 

The channel model for communication systems using 

the DSRC technology is complicated due to the severity 

of randomness from the deep fading and high speed of 

vehicles in specific scenarios. Nonetheless, the channel 

impulse response is mathematically formulated as 

( )
1 1

1
( , ) exp(2 )

L M

j jm jm j
j m

h t c f t
LM

     
= =

= + −   (3) 

where L is the number of clusters and M is the number of 

paths in each cluster with the same time delay. The 

Doppler frequency and Doppler phase are formulated as 

 max sin(2 ),jm D jmf f u=  (4) 

 2 ,jm jmu =  (5) 

where ujm is randomly distributed in the range [0,1] by a 

uniform distribution. In (3), cj denotes the channel 

magnitude of the j-th cluster. The transmitted signal ( )s t  

is passed through the DSRC channel as 

( ) ( , ) ( ),y t h t s t=                           (6) 

where  denotes the convolution operator. We emphasize 

that the considered transmission model in (6) captures the 

fundamental properties of wireless communication 

systems using the DSRC technology by selecting proper 

channel properties. Consequently, the detailed channel 

information setting will be presented in Section V. 

C. Receiver 

The image is first recovered at the receiver based on 

the received signals and pilot information. After that, the 

reconstruction quality of this image is improved by 

utilizing a post filter because of spatial correlation 

exploitation. The main methodology is illustrated in Fig. 

3. In particular, at the receiver, the received signal is 

formulated as follows: 

( ) ( ) ( ),y t y t w t= +                            (7) 

Recover image Post-Filtering

Enhanced 

image

Received

signal

Pilot 

information  
Fig. 3 The proposed receiver architecture comprising two main 

activities: Recover image based on the received signal and pilot 

information; Exploit a filter to remove noise and artifacts. 

where w(t) is the additive white Gaussian noise whose 
elements follow a circularly symmetric Gaussian noise 

with zero mean and standard derivation  [dB]. From the 
received signal in (6), the cyclic prefix is first removed to 
obtain a signal of length NFFT, denoted by ˆ( )y t . The 

signal is then transformed from the time domain into the 
frequency domain by utilizing the FFT as  

ˆ( ) FFT( ( )).dy t y t=                         (8) 

Notice that from Eq. (7), the received pilot signal is 

precisely determined in the frequency domain for channel 

estimation purposes. The demodulation scheme further 

demodulates the signal to recover what the transmitter 

used. At this point, the output of the resulting OFDM-

based DSRC system model is the final binary data 

sequence. 

IV. DEEP LEARNING-ASSISTED CHANNEL ESTIMATION 

This section presents the feasibility of applying deep 
neural networks for DSRC communications. Besides, a 
fully connected neural network is constructed to enhance 
the channel estimation quality under the finite network 
dimensions. 

A. Feasibility of Deep Neural Networks 

This paper aims to design a neural network that can 
support the channel estimation module at the receiver. 
Due to the practical hardware, the additive noise at the 
receiver should be bounded in a compact set, i.e., each 
noise element should be bounded from below and from 
above. Moreover, one obtains that 

 
1/2

2 1 2
0 ( , ) ( ) ( , ) ( ) ,h t s t h t s t     (9) 

by utilizing the Holder inequality. The obtained result in 
Eq. (6) demonstrate that the received signals should be in 
a given finite range and our decoding process is align 
with the universal approximation theorem. Consequently, 
we can consider the channel estimation at the receiver as 
a continuous mapping and approximate it by a neural 
network with a finite number of neurons. 

B. Neural Network Structure 

We now construct a neural network from the above 
analysis to learn the time-variant channel impulse 
response applied to DSRC communication systems, 
which is illustrated in Fig. 4. In this paper, we focus on 
processing the image data, so CNN should be an 
excellent candidate to capture the channel properties. 
Even though CNN was originally used in image 
processing for restoration purposes, this neural network 
structure was confirmed to be potentially applied in 
wireless communications since the propagation channels 
creates correlations similar to image patterns [19], [22].  
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Re( Ĥ  )LS

Im( Ĥ  )LS

Re(Ĥ)

Im(Ĥ)

 
Fig. 4. The considered CNN architecture to learn and predict frequency-

selective channels. 

In addition, the weights and biases used for the CNN 

are usually small, leading to a low-cost design in 

optimizing the network parameters. The proposed 

channel estimation structure includes the two stages as 

follows: 

• Stage 1: The raw channel estimates of the original 

channels are obtained by using least squares 

estimation. 

• Stage 2: The channel estimates from the first stage are 

exploited to train a CNN that can predict a better 

channel estimation quality. 

The received signal in Eq. (7) can be reformulated by 

the Hadamard product of the channel frequency response, 

and the transmitted signal as 

 ( ) ( )dy t h t= ʘ ( ) ( ),s t w t+  (10) 

where ʘ denotes the Hadamard product; and ( )h t , ( )s t , 

and ( )w t are the Fourier transform of the channels, 

signals, and noise. The MMSE estimation is an optimal 

estimator that produces the channel estimation error, but 

it requires the channel statistics, which are nontrivial to 

obtain for wideband channels under high mobility. In this 

paper, we use deep learning to support the least squares 

estimation since this method has low computational 

complexity and is suitable for fast fading channels 

without any prior information. Consequently, in the first 

stage, the channel estimate by using the least squares 

estimation is defined by using Eq. (8) as follows 

 ( )
1ˆ ( ) ( ) ( ) ( ),H

LSd dh t S t S t y t
−

=  (11) 

where (.)H denotes the Hermitian transpose and the signal 

( )s t is defined as  

 ( ) diag( ( )),S t s t=  (12) 

where dig(x) creates a diagonal matrix from the input 

vector x such that its elements are on the diagonal. The 

channel estimates of all the subcarriers are further 

obtained by utilizing a linear interpolation method. We 

emphasize that the least squares estimation is widely 

deployed in practical systems due to its low cost as a 

consequence of no prior channel information. However, 

some useful channel statistics, such as the first and 

second moments, are not exploited, and therefore there is 

still room to improve the channel estimation quality. 

Specifically, the channel estimation errors are quite high 

for the communication systems using the DSRC 

technology under high mobility, e.g., cars have high 

speeds.  

In the second stage, the considered CNN involves a 

two-dimensional (2D) input layer stacking the least 

squares channel estimates obtained from the first stage to 

produce the output comprising the better channel 

estimates. The output is obtained by a linear layer. Each 

group of the hidden layers consists of a convolutional 

layer and an activation layer. The complex channel 

estimates by the least squares estimation are split into real 

and imaginary parts and then reshaped into a matrix form 

before forwarding the input channel data into the 

convolutional layer.  Mathematically, each convolutional 

layer z has a kernel of size kzkz which convolutes with 

the input of this layer, denoted by Iz to obtain the output 

of this layer as follows 

 conv( , ) ,z z z zo I u b= +  (13) 

where uz and bz are the weights and biases of this 

convolutional layer, respectively. Besides, conv() is the 

convolution operator.  In order for the considered CNN to 

imitate the nonlinear properties of the channel profile, the 

Rectified Linear Unit (ReLU) is utilized as an activation 

function, which is defined as 

 ReLU( ) max(0, ),z z=  (14) 

where max(,) represents the maximum of the two values. 

Let us denote the channel estimates obtained by the least 

squares estimation as ˆ
LSh , then it is divided into the real 

and imaginary parts as  

  ˆ ˆRe{ }, Im{ } ,LS LSI h h=  (15) 

which characterizes the input dataset. Similarly, for the 

corresponding output, the dataset is defined as follows 

  ˆ ˆRe{ }, Im{ } ,O h h=  (16) 

which includes the real and imaginary parts of the 

channel coefficients. The training phase handles the 

following continuous mapping 

 ( ) ( )ˆ ˆ ˆ ˆRe{ }, Im{ } Re{ }, Im{ } ,LS LSh h h h→  (17) 

which is so-called matrix mapping. In order to perform 

(15), the considered CNN minimizes the minimum mean 

square error (MMSE) between the channel estimates and 

the true channels as follows 

 ( )  2ˆ, || || ,L U B E h h= −  (18) 

where h is the actual channels that can be available 

during the training phase if one utilizes the sufficiently 

large transmit power to obtain very accurate channel 

estimates; E{} denotes the expectation operator; |||| is 

the spectral norm; U and B are the sets containing all the 

weighted and biases. From the loss function in Eq. (16), 

the considered CNN can update the weights and biases 

via using the training dataset, which is numerically set up 

in Section VI. 

V. RECOVERED IMAGE ENHANCEMENT 

The process presented in the previous section decodes 

the signals based on mitigating the fluctuations of random 
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channels only. Alternatively, data structure, which 

provides various benefits, has not been considered yet. At 

the low SNR regime, the residual noise and artifacts still 

remain in the recovered image [23, 24]. We observe that 

the media data, such as images and videos, are highly 

related in the sense that there exists spatial correlation 

among neighbor pixels. The receiver can therefore exploit 

this prior information to enhance the recovered image 

quality both in the peak-signal-to-noise ratio (PSNR) and 

visualization, e.g., structural similarity (SSIM). We now 

define the recovered image from the previous steps as X̂  

that is formulated as 

 ˆ { ( )},X x t=  (19) 

where { ( )}x t are the collection of all the decoded signals 

over the data transmission. From (17), one post-filter will 

be deployed to smooth out the reconstructed image, 

therefore boosting the restoration quality. A post-filter for 

reconstructed images since there exists a correlation 

among pixels in a nature image and the signal processing 

procedures comprising OFDM and demodulation have 

not inherited the benefits. 

The first post-filter utilized in this paper is Gaussian 

filter, whose kernel K of size u u is defined as follows 

 
2 2

2 2

1
( , ) exp ,

2 2

x y
K x y

 

 +
= − 

 
 (20) 

where each pixel of the image represents by a pair of the 

coordinates (x,y) with u x u−   and ;u x u−    exp() 

is the exponential function. The Gaussian filter is 

popularly exploited in image processing due to its low 

cost and effectiveness in removing noise in high 

frequency components and blurred regions of the restored 

images. The enhanced image, denoted by X , is given as 

follows 

 ˆ .X X K=   (21) 

We stress that the Gaussian filter is popularly used in 

image restoration due to its low cost and flexibility in 

controlling the smooth level. 

The second filter utilized in this paper is the Wiener 

filter. This is a minimum mean square (MSE) optimal 

linear filter, which enhances the image reconstruction 

quality by removing noise and reducing blurring effects. 

The parameter setting of the Wiener filter needs the 

assumptions of the second-order stationary on the noise 

and image signal processes. Specifically, the filtered 

image is formulated as 

 ,wX K X=  (22) 

where Kw is the Wiener filter that is defined based on the 

point-spread function, the power spectrum of signal and 

noise. Although the Wiener filter has low computational 

complexity, it is pretty slow to implement since it 

requires working on the frequency domain. 

The third filter utilized in this paper is a dictionary 

learning algorithm called the K-SVD (singular value 

decomposition) filter, which exploits the patch-based 

model to create a dictionary for sparse presentation by 

utilizing the SVD on the noisy image [25]. Let us 

consider x  to be a patch of the original image, then the 

sparsest representation of the reconstructed image is 

formulated as follows 

 
0

ˆmin subject to ,
x

x x Dx  (23) 

where x̂  is the corresponding patch in the reconstructed 

image, and the dictionary D contains the atoms that 

define the similarities among the patches that are 

correlated to the current patch x. We notice that the K-

SVD filter exploits the non-local similarity among pixels 

in an image to refine the reconstruction quality in our 

considered framework. 

VI. NUMERICAL RESULTS 

This section scrutinizes the system performance by 

utilizing different nature image data. The carrier 

frequency is 5.9 GHz, and the system bandwidth is 10 

MHz. The modulation is QPSK (Quadrature Phase Shift 

Keying), and the number of FFT, i.e., the subcarriers, is 

64. The number of subcarriers dedicated for the guard 

interval is 6. Consequently, the total number of 

subcarriers per OFDM symbol is 81.  For the considered 

CNN, the training phase uses 100000 different 

realizations of the channel coefficients and those of the 

testing phase are 20000.  In order to demonstrate the 

merits of the applications of deep learning to channel 

estimation in DSRC communications, the following 

benchmarks are used for comparison: 

o Traditional least squares estimation (denoted as Least 

squares in the plots): The receiver simply deploys the 

least squares estimation method to estimate the 

propagation channels from the received pilot signals.  

o Linear MMSE estimation (denoted as Linear MMSE 

in the plots): The receiver deploys the linear MMSE 

estimation method to estimate the propagation 

channels from the received pilot signals. This 

estimation method requires the covariance matrices of 

the channels and received pilot signals. 

o Data-driven approach (denoted as data-driven in the 

plots): This benchmark is presented in Section IV 

with the supervised learning by using the channel 

estimates obtained by the least squares estimation 

method as the input.  

o Perfect channels (denoted as Perfect CSI n the plots): 

This benchmark assumes that the fully instantaneous 

channels are available at the receiver.  

In Fig. 5, we plot the BER as a function of the different 

SNR [dB] with the Doppler frequency of 30 Hz. The 

SNR level contributes an important role in improving the 

BER performance. In particular, the BER reduces 

significantly as the SNR increases observed by all the 

benchmarks. For example, in a network with an SNR of 

about 0 dB and perfect channel information, the BER is 

about 0.5. However, the BER reduces to 0.0025 as the 

SNR value is 14 dB. In addition, the least squares 

estimation method offers the worst BER among the 

considered scenarios without any prior channel 

information, while the linear MMSE estimation method 
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gives better reliability than the baseline, especially at the 

high SNR regime, thanks to the effectiveness of 

exploiting the channel statistics. By gathering the 

channels to train the considered CNN, the data-driven 

approach yields superior improvements in the BER 

compared to the least squares estimation method, even 

outperforming the linear MMSE estimation method at the 

high SNR values. 

 
Fig. 5. BER versus the SNR [dB] with the Doppler frequency 30 Hz. 

 
Fig. 6.  BER versus the SNR [dB] with the Doppler frequency 50 Hz. 

We plot the BER performance versus the different 

SNR values [dB] with the Doppler 50 Hz in Fig. 6. Due 

to faster movement, the BER is dramatically reduced at 

all the considered SNR settings. For instance, a network 

using the least squares estimation method and the SNR 12 

dB reduces the reliability by about 45% as the Doppler 

frequency increases from 30 Hz to 50 Hz. Similarly, the 

BER performance of the data-driven approach, linear 

MMSE, and perfect channels reduces by 60%, 50%, and 

53%, respectively. We note that the gap between the 

benchmarks becomes larger at the high SNR regime.  

In Fig. 7, we show the image reconstruction quality by 

utilizing the different post filters as presented in Section 

V with the two natural images, Lenna and Parrot. For the 

sake of completeness, we also include the original images 

and the reconstructed images without post-filtering. One 

can observe that the reconstructed quality is very bad if 

only simply decoding image data from the received 

signals and the channel information. In particular, the 

peak signal-to-noise ratio (PSNR) is only about 15.96 [dB] 

and 16.71 [dB] for the Lenna image and Parrot image, 

respectively. By exploiting a post filter, the 

reconstruction quality is superiorly improved to the 

baseline. A Gaussian filter helps remove noise and 

artifacts from the reconstructed image and refine the 

image information with the PSNR values, i.e., 16.57 [dB] 

and 17.31 [dB] for the two considered images, Lenna and 

Parrot, respectively. A Wiener filter performs better than 

the Gaussian filter in our simulation settings, which gives 

the PSNR of 20.05 [dB] for the Lenna image and 25.52 

[dB] for the Parrot image. Furthermore, the K-SVD filter 

offers a good reconstruction quality with the PSNR of 

19.73 [dB] and 20.53 [dB] for the Lenna and Parrot 

images. In terms of the visualization quality, the K-SVD 

filter gives the best performance among the selected 

methods, thanks to the patch-based representation. 

 
  (a) Ground truth  (b) Without filtering  (c) Wiener filter (d) Gaussian filter  (e) K-SVD filter 

 
   (g) Ground truth (h) Without filtering (k) Wiener filter (l) Gaussian filter (m) K-SVD filter 

Fig. 7 The reconstructed image quality by various recovery schemes: (a) and (g) are the ground truths where (a) is Lennna image and (g) is Parrot 

image; (b) and (h) are reconstructed images without a post filter: (b) reconstructed Lenna image has PSNR = 15.96 [dB] and (h) reconstructed Parrot 

image has PSNR= 16.71 [dB]; (c) and (k) are reconstructed images with a Wiener filter: (c) reconstructed Lenna image has PSNR = 20.05 [dB] and (k) 

reconstructed Parrot image has PSNR= 20.52 [dB]; (d) and (l) are reconstructed images with a Gaussian filter: (d) reconstructed Lenna image has 

PSNR = 16.57 [dB] and (l) reconstructed Parrot image has PSNR= 17.31 [dB]; (e) and (m) are reconstructed images with a K-SVD filter: (e) 

reconstructed Lenna image has PSNR = 19.73 [dB] and (m) reconstructed Parrot image has PSNR= 20.53[dB]. 
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VII. CONCLUSION 

This paper has considered the time-variant channel 
estimation applied to DSRC communication systems. We 
have shown that the data-driven approaches can 
superiorly improve the channel estimation quality from 
the baseline by learning and predicting the channel 
features. Besides, we demonstrated that the reconstructed 
images from the received signal based on the channel 
state information still suffer from residual errors and 
artifacts. As one possible solution, the post-filtering 
process can mitigate such contamination and boost the 
image quality significantly. A potential extension for 
future work should consider the machine-assisted systems 
with the DSRC technology where the transceiver is 
equipped with multiple antennas. 
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