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Abstract—As the demand for crude oil is increasing every 
day, prices and pollution are both increasing in return, 
which has harmful effects on the environment. Thus, more 
attempts are being made to develop clean energy to rescue 
the planet and provide humanity with a cleaner energy 
source. As the renewable energy sector grows, new issues 
and challenges have emerged. Instability in electricity 
production from wind turbines, solar power plants, and 
dams creates challenges for energy transmission and storage 
systems. In order to achieve a more reliable and effective 
energy system, machine learning techniques have been used 
to forecast energy changes. Predicting the sun's Global 
Horizontal Irradiance (GHI) is one of the machine learning 
applications used in that sector. In this paper, many 
machine learning methods have been utilized, such as linear 
regression and long-short term memory (LSTM) methods to 
have long term GHI forecasting. Moreover, the significance 
of this paper is located in the way of prediction of the GHI 
irradiance prediction by using different levels of the linear 
regressors to find the best regressor level that provides the 
minimum error for the testing set based on cross-validation. 
Results showed that the regressor method provides a lower 
error compared with a single vanilla LSTM system for a 

shorter time computationally.  

Index Terms—Cross-validation, linear regression, LSTM, 
renewable energy, Recurrent Neural Network (RNN), Solar 
irradiance forecasting  

I. INTRODUCTION 

To save the environment from the pollution of crude 

oil energy, many calls are being made to develop clean 

energy, save the Earth, and provide a better source of 

energy for humanity. Renewable energy can be a solution 

to save the Earth. Nowadays, the importance of 

renewable energy sources is increasing with the massive 

expansion of energy consumption in the world and with 

the decrease of non-renewable energy resources such as 

crude oil, coal, and natural gas. In addition, the use of 

non-renewable energy resources leads to high pollution 

and causes radical climatic changes [1]. As part of efforts 

to make our planet less polluted, much of the research in 

the past decade has focused on renewable energy sources, 

especially wind and solar energy sources. 
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According to the International Energy Agency (IEA), 

the global renewable energy capacity is expected to grow 

by more than 1 Terawatt, a growth of 46% by 2023 [2]. 

Solar and wind energy like other types of natural energy 

resources depend on the amount of Global Horizontal 

Irradiance (GHI) of solar power plants and the speed and 

wind direction of wind turbines and other climate 

phenomena, due to these effects, the output power 

fluctuates over time, that is why calculations are needed 

for obtaining suitable power storage units (batteries), 

determining the way of integrating the output power into 

the network and what control-units are needed so the 

highest possible generated power is handled [3]. 

With the uncertainty of the amount of GHI and of good 

energy adaptation to the power grid, it is necessary to 

calculate the GHI in the long run, depending on historical 

data that is measured from the ground or from the 

satellite. Many methods have been developed to predict 

solar radiation and predictions are also used for solar 

power plants to detect all possible results can be used to 

overcome the problems of generation and transmission, 

physical, empirical and statistical methods have been 

introduced and improved for these reasons. 

The importance of this paper is reflected in the way of 

prediction of the GHI irradiance prediction using 

different levels of the regressors to find the best regressor 

level that provides the minimum error for the testing set. 

This regressor method provides a lower error than the 

LSTM for a shorter time computationally. 

Even the partial linear regression (PLR), is not a new 

method, but to the best of our knowledge, we are the first 

to utilize this method in long-term solar irradiance 

prediction, which provides open doors to develop solar 

irradiance prediction easily and, yet, accurately method. 

Furthermore, we utilized the cross-validation method to 

test the prediction step size that provides the optimum 

step that fulfills the minimum error for both training and 

testing.  

The present paper is divided into five sections. In 

Section II, we introduce the regression methods used for 

solar irradiance forecasting. In section III, we introduce 

performance analysis that can be used with our work. In 

Section IV, the implemented models and their results are 

explained. Finally, in Section V, the results are discussed 

further with regard to future work. 
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II. SOLAR IRRADIANCE FORECASTING METHOD 

This section will discuss the prediction methods that 
are used for solar irradiance forecasting, starting from the 
oldest and simplest and moving toward the most recent 
techniques that are used for that purpose. 

A. Physical Model 

The first attempts to solve transmission and generation 
problems were the physical methods, which are 
traditional prediction methods that are also discussed in 
the literature [4–6]. These methods depend on the tilt 
angle of the PV panel, the angle of the sun, PV properties, 
and other weather conditions and their effects on the 
absorption of sunlight in photovoltaic cells [7]. The 
physical methods need a large amount of data to have 
accurate results. Other predictor types appear to have 
more accurate results in the literature.  

B. Empirical Model 

One of the most important methods is called the 
sunshine method. This method is multiple-parameter 
method that depend on two empirical values: the monthly 
average of the GHI and the monthly time of sunshine [8]. 
As shown in Eq. (1) 

average

0 0

GHI
 
S

a b
H S

= +                            (1) 

where S is the monthly average of sunshine, S0 is the day 
length, a and b are location empirical values, GHIaverage is 
the average global horizontal irradiance predicted 
monthly, H0 is the monthly real mean solar radiation [3]. 

C. The Statistical Models 

To have more accurate predictions, the literature puts 

more effort into statistical methods. These methods 

depend on the previous values of GHI to predict future 

solar irradiance and its absorbable power [7]. Statistical 

methods can be categorized into time-series methods and 

machine learning methods. 

1) The Time-Series Methods 

By using old data and some formulas, we can have an 

idea that describes how solar irradiance will be in the 

future. These methods are not very accurate due to 

abnormal weather changes, and we cannot obtain all the 

conditions in our mathematical formulas [9]. 

The Auto-Regressive Integrated Moving Average 

(ARIMA) is one of the most significant of these methods. 

Derived from the ARIMA method, which depends on two 

parts (auto-regression based on the moving average), 

these methods are more flexible and accurate than other 

time series methods [10–12]. 

2) Computational Intelligence 

Depending on statistics and to have more accurate 

results, automated methods have been developed, which 

are called computational intelligence, or “Machine 

Learning (ML) methods.” As we can see from Fig. 1, 

computational intelligence methods are the second branch 

of statistical methods. Moreover, they can also be used to 

improve both the generating and transferring of power 

from solar energy plants [9]. 

 

 
Fig. 1. Solar irradiance forecasting methods. 

Numerous computational intelligence techniques for 

both short- and long-term predictions have emerged. The 

most fundamental is linear regression, which is usually 

utilized for short-term prediction [13, 14]. In addition, 

multiple linear regression is also used to predict solar 

irradiance where it has been used to increase the number 

of effect parameters [12, 15]. Furthermore, extreme 

learning machine (ELM) is an advancement over multiple 

linear regression [16, 17]. For more accurate data, a 

support vector machine (SVM) was developed, which 

predicts short-term solar irradiance via data mapping [18]. 

Although it yields improved results, it still has limitations, 

particularly in long-term prediction; hence, the 

researchers investigated more complex nonlinear methods. 

For improved outcomes (long- and short-term 

prediction), this approach grew more complex and 

difficult to apply by using all parameters from prior 

irradiance states. 

On the other hand, feed-forward neural networks 

(FNN) are the simplest approach that resembles the 

human brain and nervous system. Typically, this kind has 

three data-processing layers: the input layer, the output 
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layer, and hidden layers [7, 19, 20]. As an evolution of 

the FNN, the Recurrent Neural Network (RNN) emerged. 

To produce fewer errors, the RNN approach uses 

sequential data with prior states and errors saved 

internally in iterators [7, 21, 18]. In addition, the Deep 

Recurrent Neural Network (DRNN), which has several 

hidden layers, generates more precise results than its 

counterparts. However, it requires more computing effort 

than others [7, 22, 23]. 
There are many types of DRNN, which all have poor 

long-term memorization traceability when using short-
memory connections, and this makes the gradient either 
explode or disappear. This resulted in the creation of the 
LSTM approach, which addresses these issues [7, 9, 24], 
[25]. LSTM is one of the deep learning methods that was 
designed to avoid long-term dependencies by keeping the 
information in a separate control unit. It consists of two 
components: a hidden layer memory cell and a working 
cell, allowing it to circumvent the gradient exploding 
(vanishing) issue [26]. The LSTM unit contains three 
gates instead of two. In addition to the input and output 
gates, there is also a “forget” gate, which eliminates noise 
and other unwanted signals from the cell for improved 
output [16, 26]. Eq. (2) describes the LSTM unit:  
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where ft is the forget gate; it is the input gate; Ot is the 

output of ht, which is the output of the hidden gate; ht−1 is 

the hidden state output of the previous LSTM block; Ct 

represents the cell state; Čt represents the candidates for 

cell state at timestamp t;  is the sigmoid function; xt is 

the input of the current timestamp. Wf, Wi, Wo, Wc, Uf, Ui, 

Uo, and Uc are the weights of the respective gates, and bf, 

bi, bo, and bc are the biases for the respective gates. 

Weights and bases remain constant throughout all steps 

and do not change from one time step to the next [27-30], 

LSTM neural network architecture is shown in Fig. 2. 

 
Fig. 2. LSTM structure network. 

Instead of all this complex method, and by returning to 
linear regression which has the main limitation of poor 

outcomes for long-term predictions of the natural 
phenomenon, some sources used multiple linear 
regression to overcome the limitations of linear 
regression to predict long-term states [31], In this paper, 
it is used multiple linear regression to predict solar 
radiation for long-term forecasting which is uncommon in 
previous studies, predicting solar irradiance for short-
terms (hours) is very easy by using any machine learning 
approach, whereas predicting solar for long-term (days, 
months or year “as done here”), required more efforts 
[32]. Moreover, the decision to use multiple linear 
regression for solar irradiance is because the solar 
irradiance is changing slowly during the day, which 
makes long-term prediction more important than short-
term and mid-term prediction in this field. 

III. PERFORMANCE ANALYSIS 

Due to the nonideal nature of the GHI, errors in solar 

irradiation predictions occur; to eliminate these errors, the 

system must be analyzed and the faults that have been 

committed must be examined. One of the following 

assessment types may be used. 

Graphically: predicted data can be compared with 

measured data so we can visually recognize errors and 

differences. Many kinds of literature use time series plots, 

scatter plots, or Receiver Operating Characteristic (ROC) 

curves [15]. 

Statistically: the graphical “traditional” methods are 

not enough to test the results. More accurate and more 

detailed results are needed. The statistical method can 

give us what we need. Many statistical formulas are used 

for our objectives. The most commonly used method is, 

the root mean square error (RMSE), which is also used 

for analyzing the systems. RMSE can be calculated using 

Eq. (3): 

( )
2

1

1
ˆRMSE

M

i i

i

y y
M =

= −                      (3)  

Database description: the database used in this work 
contains many weather details besides the date, rainfall, 
snowfall, wind direction, and other information. This 
database is obtained from the Modern-Era Retrospective 
Analysis for Research and Applications, Version 2 
(MERRA-2), which is being developed to be a 
“milestone” for future integrated Earth system analysis 
(IESA) that is under construction. MERRA-2 has many 
quality enhancements and decreases in erroneous trends 
and system-related faults, the database contains data of 
1490 days with solar irradiance took for every 24 hours, 
at the time of maximum daily irradiance, these 1490 
records are divided into the training set and testing set 
[33]. This sort of technology provides GHI, rainfall, and 
snowfall probabilities together with temperature, relative 
humidity, and pressure at a distance of 2 m from the land, 
while wind speed is measured at a distance of 10 m, the 
data of this technology is widely used in literature and for 
many fields [34–36]. The time period covered by the 
dataset begins on December 1, 2016, and ends on 
December 31, 2020, for a site located at a latitude of 
36,356 (positive means north) and a longitude of 43,125 
(positive means east) (Mosul, Iraq). 
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In this study, solar irradiance is predicted using only 
the days of the year, which is more important for us due 
to the slowness of irradiance changing during the day and 
other parameters like wind speed and rainfall are 
neglected for now 

IV. MODELS IMPLEMENTATION 

The MERRA-2 was analyzed using Python 
programming in order to generate one-year forecasts. 
Four of the five implemented models rely on linear 
prediction, while the fifth model is the LSTM model. For 
each model, the data is divided into two parts: two years 
for training data and one year for testing data. The 
outliers are set to the average, so they have no effect on 
the results. 

A. Linear Predictors 

Initially, a single predictor is used for the entire year. 
In the second model, the year is divided into four parts 
for which four predictors are applied. The third model 
divides the year into 12 parts. The fourth model divides 
the year into twenty-four parts. The following formula 
clearly demonstrates linear prediction. 

( )i i iY X e= +                           (4) 

where Yi is dependent variable (to be predicted), Xi is the 

independent variable (to be used in Y prediction),  is the 
Regression coefficient, ei is the error. 

V. RESULTS AND DISCUSSION 

The forecasting results will span five-time frames: one-
year, seasonal forecasting (four months), monthly 
forecasting, half-month forecasting, and weekly 
forecasting. Accordingly, each of these scenarios will 
involve a number of regressors. 
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                            (5) 

Every equation is used to predict a specific period of 
time, in another word there are many simple linear 
models that work together to form the final prediction 
curve. Later, we will compare the results with the LSTM 
results. 

A. Whole Year Forecasting (One Regressor) 

Short-term results from the single-regressor model are 
acceptable, but as can be seen in Fig. 3, over longer time 
periods, the model introduces extremely bad results. 

The RMSE is depicted in Fig. 4 and demonstrates that 
the result differs significantly from the actual data (it 
gives the mean irradiance for the entire year). It is 
obvious that the system produces results with high errors 
(most days have an RMSE of 1 up to 4). Fig. 4 depicts the 
distribution of points along the range of RMSE, where 
around 90 points may have an RMSE equal to 0.3. As 
RMSE increases, we observe that the number of points 
decreases. 

 
Fig. 3. One-part regression (whole year) output. 

 
Fig. 4. RMSE for one-part regressor 

B. Season Forecasting (Four Regressors) 

Due to the inaccuracy of the (one regressor) model, the 
year has been divided into four parts, each part represents 
a distinct season. Using the same equation for each 
regressor, the outcome of our design is shown in Fig. 5. 

The output curve shows that the model performs better 
than a single regressor model. The average of each season 
can be taken, where the summer has higher irradiance due 
to the low probability of cloud formulation. The 
probability distribution of the RMSE of the model is 
depicted in Fig. 6. It indicates that more points are 
located closer to the left, resulting in a lower RMSE, 
which is preferable to the RMSE for a one-part regressor. 
Evidently, error levels have decreased since the majority 
of errors are smaller than 2. 

 
Fig. 5. Four regressors output. 
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Fig. 6. RMSE for four regressors. 

 
Fig. 7. Twelve regressors output. 

 
Fig. 8. RMSE for twelve regressors. 

C. Monthly Forecasting (Twelve Regressors) 

Although the RMSE for four regressors is less than 2 

units, a more precise result is required. As illustrated in 

Fig. 7, this model uses a predictor for each month to 

achieve better results. 

Based on Fig. 7, the predicted irradiance is closer to 

the actual data, and we can observe the RMSE probability 

distribution to examine our results in further depth. 

According to the graph in Fig. 8, the number of days 

with errors of three or four units approaches zero, while 

the number of days with errors of less than half a unit 

increases (more than 250 days have that RMSE). 

 
Fig. 9. Twenty-four-part regressors output 

 
Fig. 10. RMSE for twenty-four regressors. 

D. Half-Month Forecasting (Twenty-Four Regressors) 

To improve the precision of the results, more 

regressors are added, one for every 15 days, as seen in 

Fig. 9. While Fig. 10 displays the RMSE probability 

distribution. 

E. Weekly E-Budget (Fifty-Two Regressors) 

For more precise predictions, fifty-two linear 
regressors are used separately. Fig. 11 depicts the 
forecasts. And the RMSE probability distribution is 
shown in Fig. 12. 

Because there was no discernible difference in the 
RMSE curves between the (24-regressors and 52-
regressors) scenarios, no more regressors were introduced. 

 
Fig. 11. Fifty-two-part regressors output. 
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Fig. 12. RMSE for fifty-two-part regressors. 

F. Cross-Validation 

As training and testing data are separated, increasing 
the number of regressors enhances training performance. 
The same is done to the testing phase, increasing the 
number of regressors in the testing set due to 
“overfitting” for the training, which may not be suitable 
for the testing. The RMSE for training and testing is 
listed in Table I. We can observe that as the number of 
regressors increases, the training error decreases. On the 
other hand, the error decreases in the testing set until the 
twenty-fourth regressor; beyond that, the RMSE of the 
testing set increases. 

In Table I, we can see the Min-RMSE in the fourth 
column, which shows the minimum value of RMSE 
shared between the training and testing, which is the goal 
of cross-validation. The min RMSE value that we 
obtained in the Table is at twenty-four linear predictors, 
which makes sense, refer to Fig. 9 comparing to Fig. 3, 
Fig. 5, Fig. 7, and Fig. 9.  

TABLE I: THE CROSS-VALIDATION OF TESTING AND TRAINING 

Method 
RMSE in 
training 

RMSE in 
testing 

Min-RMSE 
training/ testing 

One linear predictor 0.984 0.9799  
Four linear predictors 0.456 0.4611  
Twelve linear predictors 0.261 0.2812  
Twenty-four linear predictors 0.221 0.2277 0.221/ 0.2277 
Fifty-two linear predictors 0.212 0.2475  
One hundred and four linear 
predictors 

0.211 0.4382  

 
Fig. 13. The cross-validation of the training and testing. 

The accuracy as a function of the number of regressors 
for the training set and testing set is depicted in Fig. 13. A 
number of regressors boost the accuracy of the training 
set. Nonetheless, the testing set improves accuracy. After 
the twenty-four regressor, the problem of overfitting 
occurs in the linear predictor. Consequently, the twenty-
fourth regressor is the optimal regressor level for 
predicting the weather based on training data. 

G. LSTM Predictor  

Vanilla LSTM is the simplest LSTM model, with a 
single hidden layer and a single output. The input units 
are 24 units, a unit for every 15 days. The inputs are 
processed at the first layer, then transferred to the hidden 
layer, and finally transferred to the output layer, which 
gives the predictions for the selected period of the year. 
In this model, the data is divided, so every time 32 
samples are processed at the same time. In other words, 
the batch size is chosen to be 32. Taking a number less 
than 32 may give better results, but it will take too much 
time. The epoch is selected to be 100. That means the 
model will iterate up to 100 times for every batch to have 
better results. The Augmented Dynamic Adaptive Model 
(ADAM) optimization model in python is used as an 
optimizer because of its high performance and fast 
convergence compared to the other optimizers. In Fig.14 
are the LSTM prediction results for the given model. 

It is clear that the LSTM model can give a pure curve 
(not over-fitted) as forecasting for the entire year. RMSE 
is given in Fig. 15 below. 

Most of the time, the error in the forecasts is less than 
0.6, which is a desirable number, making LSTM one of 
the most accurate methods. 

 
Fig. 14. LSTM output 

 
Fig. 15. RMSE for LSTM output 

 1              4            12            24            52 

Train set 

Test set 

# Of regressors 

Accuracy 100% 
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H. Discussion 

The RMSE and processing time for each model are 

summarized in Table II. 

TABLE II: RMSE AND PROCESSING TIME FOR DIFFERENT MODELS 

Method RMSE in average Processing time 

One linear predictor 0.9799 0.4264 second 

Four linear predictors 0.4611 0.4308 second 

Twelve linear 
predictors 

0.2812 0.4329 second 

Twenty-four linear 
predictors 

0.2277 0.6397 second 

Fifty-two linear 
predictors 

0.2475 2.739 seconds 

Vanilla LSTM 0.360 6.8090 second 

From Table II, linear regression is used in different 

ways to obtain results close to the actual values and to 

vanilla LSTM, where the single linear regressor's amount 

of error is high throughout the year (giving an average 

value for the year). As the number of regressors increases, 

the time required to complete the forecast increases, and 

the value of the RMSE decreases. The RMSE decrement 

becomes shallower when twelve regressors are set in the 

model; better results are obtained with twelve and 

twenty-four regressors. However, increasing the number 

of regressors does not always lead to better results. In the 

case of the fifty-two regressors, it provides less accurate 

results for a longer time. And this result reinforces the 

cross-validation result in Table I, where the twenty-four 

linear predictors provide the best performance in terms of 

accuracy.  

The LSTM model, on the other hand, has pure 

curvilinear results and takes a very long time to reach 

results, while RMSE is worse than twelve and twenty-

four regressors. The LSTM took 6.8 seconds and had an 

RMSE of 0.36, whereas the 24-regressor model took 0.64 

seconds and had an RMSE of 0.227. These results give 

the twenty-four linear model an advantage over the 

LSTM model. The comparison of the results figures and 

RMSE values reveals that the predicted values are more 

closely aligned with the real irradiance values, supporting 

the system's basic idea.   

VI. CONCLUSION 

Dividing the long term into smaller periods and using 

the simplest ways can give better results than forecasting 

the whole long term by using one regressor. Because of 

the non-ideality of natural phenomena, results will have a 

non-curvilinear shape. As the linear regressors increase, 

more accurate data will appear. While the LSTM has a 

non-over-fitted curve, it has complicated parameters that 

must be chosen by trying different values till the model 

gives better results. That takes more time besides 

processing time. For this reason and as a future work may 

need more efforts to have output shape closer to the curve 

and to have better predictions. 
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